Pap Smear Image Classification for Cervical Cancer Prediction with Transfer Learning on ResNet101 Architecture

Authors

  • Sila Cahya Dewi Universitas Amikom Yogyakarta
  • Rumini Rumini Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i5.10343

Abstract

Early detection of cervical cancer remains a pivotal strategy to improve clinical outcomes and mitigate mortality associated with this disease. This study introduces a robust deep learning framework employing the ResNet101 architecture to facilitate the automated classification of cervical cell images derived from Pap smear examinations. By leveraging transfer learning, the pre-trained ResNet101 model was fine-tuned to extract salient morphological features critical for distinguishing among diverse cervical cell categories. A comprehensive dataset of labeled Pap smear images, systematically expanded through augmentation techniques, was utilized to enhance model generalizability. The proposed approach achieved a remarkable classification accuracy of 99.6%, highlighting its effectiveness in reliably differentiating between normal and abnormal cellular structures. These findings substantiate the promise of deep residual networks coupled with transfer learning as a powerful tool in advancing computer-aided diagnostic systems, thereby reinforcing early screening initiatives for cervical cancer.

Downloads

Download data is not yet available.

References

[1] S. Zhang, H. Xu, L. Zhang, and Y. Qiao, “Cervical cancer: Epidemiology, risk factors and screening,” Chinese Journal of Cancer Research, vol. 32, no. 6,

pp. 720–728, 2020, doi: 10.21147/j.issn.1000-

9604.2020.06.05.

[2] World Health Organization, Cancer Today: Data Visualization Tools for Exploring the Global Cancer Burden in 2022. International Agency for Research on Cancer, 2022. [Online]. Available: https://gco.iarc.fr/today

[3] Kementerian Kesehatan Republik Indonesia, “Kemenkes Tegaskan Komitmen Eliminasi Kanker Serviks: 36 Ribu Kasus Baru Terdeteksi Setiap Tahun,” Kementerian Kesehatan RI, Feb. 2024. [Online]. Available: https://www.kemkes.go.id

[4] World Health Organization, Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem. Geneva: WHO, 2020. [Online]. Available: https://www.who.int/publications/i/item/978924001

[5] PressRelease.id, "Skrining kanker serviks modal utama turunkan angka kematian perempuan," PressRelease.id, Feb. 2024. [Online]. Available: https://pressrelease.kontan.co.id/news/skrining-kanker-serviks-modal-utama-tanggulangi-kematian-perempuan

[6] S. L. Tan, G. Selvachandran, W. Ding, R. Paramesran, and K. Kotecha, “Cervical Cancer Classification From Pap Smear Images Using Deep Convolutional Neural Network Models,” Interdiscip Sci, vol. 16, no. 1, pp. 16–38, Mar. 2024, doi: 10.1007/s12539-023-00589-5.

[7] N. Al Mudawi and A. Alazeb, “A Model for Predicting Cervical Cancer Using Machine Learning Algorithms,” Sensors, vol. 22, no. 11, Jun. 2022, doi: 10.3390/s22114132.

[8] P. Jiang et al., “A systematic review of deep learning-based cervical cytology screening: from cell identification to whole slide image analysis,” Artif Intell Rev, vol. 56, pp. 2687–2758, Nov. 2023, doi: 10.1007/s10462-023-10588-z.

[9] S. Dayalane, S. Murugesan, S. K. Mathivanan, H. Rajadurai, K. Panneer Selvam, and M. A. Shah, “Cervical Cancer Classification Using Deep Learning Approach Using Colposcopy Images,” Neural Process Lett, vol. 57, no. 4, Aug. 2025, doi: 10.1007/s11063-025-11770-w.

[10] L. Liu, J. Liu, Q. Su, Y. Chu, H. Xia, and R. Xu, “Performance of artificial intelligence for diagnosing cervical intraepithelial neoplasia and cervical cancer: a systematic review and meta- analysis,” EClinicalMedicine, vol. 80, Feb. 2025, doi: 10.1016/j.eclinm.2024.102992.

[11] B. Z. Wubineh, A. Rusiecki, and K. Halawa, “Classification of cervical cells from the Pap smear image using the RES_DCGAN data augmentation and ResNet50V2 with self-attention architecture,” Neural Comput Appl, Dec. 2024, doi: 10.1007/s00521-024-10404-x.

[12] Dr. Madhur Jain, Mayank Singh Bora, Sameer Chandnani, Sanidhay Grover, and Shivank Sadwal, “Comparison of VGG-16, VGG-19, and ResNet- 101 CNN Models for the purpose of Suspicious Activity Detection,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, pp. 121– 130, Jan. 2023, doi: 10.32628/cseit2390124.

[13] S. D. Roy, A. Mohanta, T. Edema, N. Nath, and M.

K. Bhowmik, “Classification of Multiclass Pap Smear Image and Asymmetric Characterization for Prediction of Severity of Cervical Abnormality,” Int J Biomed Imaging, vol. 2025, no. 1, 2025, doi: 10.1155/ijbi/9860677.

[14] M. Al, M. Hasan, J. Shin, T. Baba, A. Saleh, and M. Miah, “Cervical Cancer Detection Using Multi- Branch Deep Learning Model”, doi: 10.48550/arXiv.2408.10498.

[15] M. M. Rahaman et al., “DeepCervix: A Deep Learning-based Framework for the Classification of Cervical Cells Using Hybrid Deep Feature Fusion Techniques,” Aug. 2021, doi: 10.1016/j.compbiomed.2021.104649.

[16] D. Desiani, D. Fitrianah, and A. A. Supianto, “Multiclass Classification of Cervical Pap Smear Images Using Deep Learning-Based Model,” Traitement du Signal, vol. 40, no. 2, pp. 457–463, Apr. 2023. doi: 10.18280/ts.400204

[17] O. Attallah, “CerCan·Net: Cervical cancer classification model via multi-layer feature ensembles of lightweight CNNs and transfer learning,” Expert Syst Appl, vol. 229, Nov. 2023, doi: 10.1016/j.eswa.2023.120624.

[18] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.

I. A. Reshma et al., “Finding a Suitable Class Distribution for Building Histological Images Datasets Used in Deep Model Training—The Case of Cancer Detection,” J Digit Imaging, vol. 35, no. 5, pp. 1326–1349, Oct. 2022, doi: 10.1007/s10278-

022-00618-7.

[19] S. Alsubai et al., “Privacy Preserved Cervical Cancer Detection Using Convolutional Neural Networks Applied to Pap Smear Images,” Comput Math Methods Med, vol. 2023, no. 1, Jan. 2023, doi: 10.1155/2023/9676206.

[20] W. Liu et al., “Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: from convolutional neural networks to visual transformers,” Nov. 2021, [Online]. Available:

http://arxiv.org/abs/2105.07402

[21] S. Dhawan, K. Singh, and M. Arora, “Cervix image classification for prognosis of cervical cancer using deep neural network with transfer learning,” EAI Endorsed Trans Pervasive Health Technol, vol. 7, no. 27, 2021, doi: 10.4108/eai.12-4-2021.169183.

[22] Z. Niswati, R. Hardatin, M. N. Muslimah, and S. N. Hasanah, “Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear,” Faktor Exacta, vol. 14, no. 3, p. 160, Oct. 2021, doi:

10.30998/faktorexacta.v14i3.10010.

[23] H. E. Kim, A. Cosa-Linan, N. Santhanam, M. Jannesari, M. E. Maros, and T. Ganslandt, “Transfer learning for medical image classification: a literature review,” Dec. 01, 2022, BioMed Central Ltd. doi: 10.1186/s12880-022-00793-7.

[25] A. Davila, J. Colan, and Y. Hasegawa, “Comparison of fine-tuning strategies for transfer learning in medical image classification,” Jun. 2024, doi: 10.1016/j.imavis.2024.105012.

[26] H. Alquran et al., “Cervical Cancer Classification Using Combined Machine Learning and Deep Learning Approach,” Computers, Materials and Continua, vol. 72, no. 3, pp. 5117–5134, 2022, doi: 10.32604/cmc.2022.025692.

[27] M. Shafiq and Z. Gu, “Deep Residual Learning for Image Recognition: A Survey,” Sep. 01, 2022, MDPI. doi: 10.3390/app12188972.

[28] C. Rutili de Lima, S. G. Khan, S. H. Shah, and L. Ferri, “Mask region-based CNNs for cervical cancer progression diagnosis on pap smear examinations,” Heliyon, vol. 9, no. 11, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21388.

[29] H. Göker, “Detection Of Cervical Cancer From Uterine Cervix Images Using Transfer Learning Architectures,” Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 25, no. 2,pp. 222–239, Jun. 2024, doi:10.18038/estubtda.1384489.

[30] S. Alsubai et al., “Privacy Preserved Cervical Cancer Detection Using Convolutional Neural Networks Applied to Pap Smear Images,” Comput Math Methods Med, vol. 2023, no. 1, Jan. 2023, doi: 10.1155/2023/9676206

Downloads

Published

2025-10-18

How to Cite

[1]
S. C. Dewi and R. Rumini, “Pap Smear Image Classification for Cervical Cancer Prediction with Transfer Learning on ResNet101 Architecture”, JAIC, vol. 9, no. 5, pp. 2791–2800, Oct. 2025.