Implementation of Naive Bayes Algorithm for Early Detection of Stunting Risk

Authors

  • Nita Mirantika Sistem Informasi Fakultas Ilmu Komputer, Universitas Kuningan
  • Ragel Trisudarmo Sistem Informasi Fakultas Ilmu Komputer, Universitas Kuningan
  • Tri Septiar Syamfithriani Sistem Informasi Fakultas Ilmu Komputer, Universitas Kuningan

DOI:

https://doi.org/10.30871/jaic.v9i2.9144

Keywords:

Naive Bayes Algorithm, Early Detection, Stunting Risk, Predictive Model

Abstract

This study aimed to develop an early detection model for stunting risk in children in Kuningan Regency using the Naïve Bayes algorithm. The model used 3,155 data with a division of 50% training data and 50% testing data, utilizing five predictor variables: gender, age, weight, height, and nutritional intake. The results demonstrated an accuracy of 66.8%, precision of 62.4%, and recall of 69.5%, indicating that the model performs adequately but requires further refinement to enhance predictive quality. Improvements can be achieved by incorporating additional variables, such as environmental factors, sanitation, and maternal nutritional status, as well as optimizing data preprocessing techniques. The findings provide a scientific basis for the Kuningan Regency Health Office to design targeted intervention strategies, including regular screening programs, specific nutritional interventions, and community health education. Effective implementation of these strategies requires collaborative efforts among local government, community health centers (puskesmas), integrated health posts (posyandu), and other stakeholders to ensure a holistic and sustainable approach to stunting prevention. This study highlights the potential of data-driven models in supporting evidence-based public health policies and interventions.

Downloads

Download data is not yet available.

References

[1] I. P. Putri, T. Terttiaavini, and N. Arminarahmah, “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 257–265, 2024, doi: 10.57152/malcom.v4i1.1078.

[2] I. Ali, D. Ade Kurnia, M. A. Pratama, and F. Al Ma’ruf, “KOPERTIP: Jurnal Ilmiah Manajemen Informatika dan Komputer Klasifikasi Status Stunting Balita Di Desa Slangit Menggunakan Metode K-Nearest Neighbor,” J. Ilm. Manaj. Inform. dan Komput., vol. 05, no. 03, pp. 35–38, 2021, [Online]. Available: http://jurnal.kopertipindonesia.or.id/index.php/kopertip.

[3] M. R. D. Mustakim, Irwanto, R. Irawan, M. Irmawati, and B. Setyoboedi, “Impact of Stunting on Development of Children between 1–3 Years of Age,” Ethiop. J. Health Sci., vol. 32, pp. 569–578, 2022.

[4] U. R. Gurning, S. F. Octavia, D. R. Andriyani, N. Nurainun, and I. Permana, “Prediksi Risiko Stunting pada Keluarga Menggunakan Naïve Bayes Classifier dan Chi-Square,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 172–180, 2024, doi: 10.57152/malcom.v4i1.1074.

[5] W. Widhari, A. Triayudi, and R. T. K. Sari, “Implementation of Naïve Bayes and K-NN Algorithms in Diagnosing Stunting in Children,” SAGA J. …, vol. 2, no. 1, pp. 164–174, 2024, doi: 10.58905/SAGA.vol2i1.242.

[6] A. D. Laksono, R. D. Wulandari, N. Amaliah, and R. W. Wisnuwardani, “Stunting among children under two years in Indonesia: Does maternal education matter?,” PLoS One, vol. 17, 2022.

[7] N. C. Parinduri, “Cegah Stunting Dan Gizi Buruk Pada Balita Dengan Edukasi Gizi Bagi Tumbuh Kembang Anak Di Puskesmas Batahan Kabupaten Mandailing Natal Tahun 2022,” J. Kesehat. Ilm. Indones. (Indonesian Heal. Sci. Journal), 2022.

[8] S. Pratama, I. Iswandi, A. Sevtian, and T. P. Anjani, “Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma C4.5 dengan CRISP-DM,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 20–14, 2023, doi: 10.30871/jaic.v7i1.4998.

[9] I. Kanedi and E. Suryana, “Penerapan Metode K-Means Clustering Dalam Pengelompokan Data Pasien Rawat Inap Peserta BPJS Di Rumah Sakit Umum Daerah Kabupaten Kaur,” vol. 20, no. 2, pp. 493–500, 2024.

[10] M. H. Sukri and Y. Handrianto, “Penerapan Algoritma C4. 5 Dalam Menentukan Prediksi Prestasi Siswa Pada SMPN 51 Jakarta,” Informatics Comput. Eng. J., vol. 4, no. 1, pp. 11–24, 2024.

[11] R. Firnando, “Sistem Pakar Stunting Pada Balita Menggunakan Metode Forward Chaining dan Naive Bayes,” J. Sains Inform. Terap., vol. 1, no. 2, pp. 115–119, 2022.

[12] A. P. U. Rahmayadi, U. Enri, and P. Purwantoro, “Klasifikasi Kinerja Asisten Laboratorium Selama Pandemi Covid-19 Menggunakan Algoritma Naïve Bayes,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 122–127, 2021, doi: 10.30871/jaic.v5i2.3261.

[13] Y. Malo and A. U. Janga, “Klasifikasi Penentuan Stunting Menggunakan Metode Naïve Bayes ( Studi Kasus : Desa Letekonda Selatan ),” J. Ilmu Komput. dan Sist. Inf., vol. 6, pp. 217–226, 2023.

[14] Y. Saputra, N. Khoirunisa, and S. Arinal Haqq, “Classification of Health and Nutritional Status of Toddlers Using the Naïve Bayes Classification,” CoreID J., vol. 1, no. 2, pp. 49–57, 2023, doi: 10.60005/coreid.v1i2.8.

[15] E. R. Arumi, Sumarno Adi Subrata, and Anisa Rahmawati, “Implementation of Naïve bayes Method for Predictor Prevalence Level for Malnutrition Toddlers in Magelang City,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 2, pp. 201–207, 2023, doi: 10.29207/resti.v7i2.4438.

[16] S. Sharma, K. Guleria, S. Kumar, and S. Tiwari, “Deep Learning based Model for Detection of Vitiligo Skin Disease using Pretrained Inception V3,” Int. J. Math. Eng. Manag. Sci., vol. 8, no. 5, pp. 1024–1039, 2023, doi: 10.33889/IJMEMS.2023.8.5.059.

[17] S. M. H. S. Iqbal, N. Jahan, A. S. Moni, and M. Khatun, “An Effective Analytics and Performance Measurement of Different Machine Learning Algorithms for Predicting Heart Disease,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2, pp. 429–433, 2022, doi: 10.14569/IJACSA.2022.0130250.

[18] N. Fajriati and B. Prasetiyo, “Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 3, pp. 503–512, 2023, doi: 10.25126/jtiik.20231036510.

[19] G. C. Lestari and S. Supatmi, “Analisis Prediksi Kelulusan Course Pada E-Learning Menggunakan Model Klasifikasi,” J. Tata Kelola dan Kerangka Kerja Teknol. Inf., vol. 9, no. 2, pp. 79–85, 2023, doi: 10.34010/jtk3ti.v9i2.11319.

[20] M. R. Maulana, A. Abdunnur, and M. R. Syahrir, “Analisis Kuartil, Desil Dan Persentil Pada Ukuran Panjang Udang Loreng (Mierspenaeopsis Sculptilis) Di Perairan Muara Ilu Kabupaten Kutai Kartanegara,” Trop. Aquat. Sci., vol. 1, no. 1, pp. 10–16, 2022, doi: 10.30872/tas.v1i1.467.

[21] N. Nurhayati aris, “Penerapan Algoritma Naive Bayes Dalam Menentukan Kelayakan Nasabah Pada Koperasi Simpan Pinjam,” J. Comput. Inf. Syst. ( J-CIS ), vol. 1, no. 1, pp. 1–9, 2021, doi: 10.31605/jcis.v2i2.811.

Downloads

Published

2025-03-18

How to Cite

[1]
N. Mirantika, R. Trisudarmo, and T. S. Syamfithriani, “Implementation of Naive Bayes Algorithm for Early Detection of Stunting Risk”, JAIC, vol. 9, no. 2, pp. 356–363, Mar. 2025.

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.