Long Short-Term Memory as a Rainfall Forecasting Model for Bogor City in 2025-2026
DOI:
https://doi.org/10.30871/jaic.v9i2.9068Keywords:
Cross-validation, Forecasting, LSTM, RainfallAbstract
Indonesia is a country with a tropical climate that has unique and changing weather patterns. Accurate rainfall prediction can help local governments, farmers, and the broader community plan activities that depend on rainfall patterns. This research aims to develop a rainfall prediction model for Bogor City using past rainfall data in Bogor City, which is known as an area with high rainfall levels and dynamic rainfall patterns. The analysis utilizes rainfall data recorded by the JAXA satellite from January 1, 2014, to December 31, 2024. The prediction method implemented in this research is the long short-term memory (LSTM). The LSTM modelling process evaluates various models by comparing RMSE, MAE, and correlation values through expanding window cross-validation, selecting the model with the lowest average RMSE and MAE with the highest correlation as the optimal choice. The best-performing model was achieved with 25 epochs and a batch size of 1, resulting in an average RMSE of 56.3340, MAE of 35.5223, and correlation of 0.3209. This best-performing model is then employed to predict rainfall for the next two years. The results show significant daily variations in the predicted rainfall but can capture existing seasonal patterns.
Downloads
References
[1] K. Yamamoto, T. Sayama, and Apip, “Impact of climate change on flood inundation in a tropical river basin in Indonesia,” Progress in Earth and Planetary Science, vol. 8, no. 1, p. 5, Jan. 2021, doi: 10.1186/s40645-020-00386-4.
[2] E. S. Buffa and R. K. Sarin, Modem Production/ Operations Management. Los Angeles, CA, USA: John Wiley & Sons, Inc., 1987.
[3] J. Patterson and A. Gibson, Deep Learning A Practitioners Approach. California (US): O’Reilly Media, 2017.
[4] O. A. Qasem, M. Akour, and M. Alenezi, “The Influence of Deep Learning Algorithms Factors in Software Fault Prediction,” IEEE Access, vol. 8, pp. 63945–63960, 2020, doi: 10.1109/ACCESS.2020.2985290.
[5] J. N. van Rijn and F. Hutter, “Hyperparameter Importance Across Datasets,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, in KDD ’18. New York, NY, USA: Association for Computing Machinery, Jul. 2018, pp. 2367–2376. doi: 10.1145/3219819.3220058.
[6] K. Cho and Y. Kim, “Improving streamflow prediction in the WRF-Hydro model with LSTM networks,” Journal of Hydrology, vol. 605, p. 127297, Feb. 2022, doi: 10.1016/j.jhydrol.2021.127297.
[7] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[8] A. Chaudhary, K. S. Chouhan, J. Gajrani, and B. Sharma, “Deep Learning With PyTorch,” in Machine Learning and Deep Learning in Real-Time Applications, IGI Global Scientific Publishing, 2020, pp. 61–95. doi: 10.4018/978-1-7998-3095-5.ch003.
[9] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition,” Feb. 05, 2014, arXiv: arXiv:1402.1128. doi: 10.48550/arXiv.1402.1128.
[10] P. Le and W. Zuidema, “Quantifying the vanishing gradient and long distance dependency problem in recursive neural networks and recursive LSTMs,” Mar. 01, 2016, arXiv: arXiv:1603.00423. doi: 10.48550/arXiv.1603.00423.
[11] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 30, 2017, arXiv: arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980.
[12] F. Asferizal, “Analisis Perbandingan Kehandalan Data Hujan GSMaP, TRMM, GPM dan PERSIANN Terhadap Data Obsevasi Dalam Rentang Waktu Penelitian 2020 - 2021,” Journal of Infrastructure Planning and Design, vol. 2, no. 1, Art. no. 1, Jul. 2022.
[13] I. Permana and F. N. S. Salisah, “Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation: The Effect of Data Normalization on the Performance of the Classification Results of the Backpropagation Algorithm,” Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), vol. 2, no. 1, Art. no. 1, Mar. 2022, doi: 10.57152/ijirse.v2i1.311.
[14] J. Brownlee, Long Short-Term Memory Networks With Python: Develop Sequence Prediction Models with Deep Learning. Machine Learning Mastery, 2017.
[15] R. Tanjung, A. Listiani, and F. Lestari, “Prediksi Multivariate Time Series Parameter Cuaca Menggunakan Long Short - Term Memory (LSTM),” Prosiding Seminar Nasional Sains Data, vol. 4, no. 1, Art. no. 1, Sep. 2024, doi: 10.33005/senada.v4i1.253.
[16] R. F. Firdaus and I. V. Paputungan, “Prediksi Curah Hujan di Kota Bandung Menggunakan Metode Long Short Term Memory,” Jurnal Penelitian Inovatif, vol. 2, no. 3, pp. 453–460, Nov. 2022, doi: 10.54082/jupin.99.
[17] M. Q. Mahmood, X. Wang, F. Aziz, and T. Pang, “Evaluating the sustainability of groundwater abstraction in small watersheds using time series analysis,” Groundwater for Sustainable Development, vol. 26, p. 101288, Aug. 2024, doi: 10.1016/j.gsd.2024.101288.
[18] Y. Feng, Y. Zhang, and Y. Wang, “Out-of-sample volatility prediction: Rolling window, expanding window, or both?,” Journal of Forecasting, vol. 43, no. 3, pp. 567–582, 2024, doi: 10.1002/for.3046.
[19] T. Prasetyo, R. A. Putri, D. Ramadhani, Y. Angraini, and K. A. Notodiputro, “Perbandingan Kinerja Metode Arima, Multi-Layer Perceptron, dan Random Forest dalam Peramalan Harga Logam Mulia Berjangka yang Mengandung Pencilan,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 2, Art. no. 2, Aug. 2024, doi: 10.25126/jtiik.20241127392.
[20] CNN Indonesia, “Jadwal Lengkap Awal Musim Hujan di Bogor, Depok, Tangerang, dan Bekasi,” CNN Indonesia. Accessed: Mar. 10, 2025. [Online]. Available: https://www.cnnindonesia.com/teknologi/20241022172439-641-1158456/jadwal-lengkap-awal-musim-hujan-di-bogor-depok-tangerang-dan-bekasi
[21] S. Hidayatulah, “BPBD Prediksi Musim Kemarau di Bogor Hingga Oktober 2023 - Pakuan Raya.” Accessed: Mar. 10, 2025. [Online]. Available: https://pakuanraya.com/bpbd-prediksi-musim-kemarau-di-bogor-hingga-oktober-2023/
[22] A. ADRI, “Kabupaten Bogor Mulai Dilanda Kekeringan,” kompas.id. Accessed: Mar. 10, 2025. [Online]. Available: https://www.kompas.id/baca/metro/2023/06/11/kabupaten-bogor-mulai-dilanda-kekeringan
[23] D. Kasihairani, R. Virgianto, and S. Risnayah, “Dampak El Niño Southern Oscillation Dan Indian Ocean Dipole Mode Terhadap Variabilitas Curah Hujan Musiman Di Indonesia,” Jun. 2014.
[24] M. D. A. Carnegie and C. Chairani, “Perbandingan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU) Untuk Memprediksi Curah Hujan,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, Art. no. 3, Jul. 2023, doi: 10.30865/mib.v7i3.6213.
[25] W. li and Z. Liu, “A method of SVM with Normalization in Intrusion Detection,” Procedia Environmental Sciences, vol. 11, pp. 256–262, Jan. 2011, doi: 10.1016/j.proenv.2011.12.040.
[26] F. Masri, D. Saepudin, and D. Adytia, “Peramalan Seri Waktu Permukaan Laut Menggunakan Deep Learning Rnn, Lstm, Dan Bilstm, Studi Kasus Di Teluk Jakarta, Indonesia,” eProceedings of Engineering, vol. 7, no. 2, Art. no. 2, Aug. 2020, Accessed: Mar. 10, 2025. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/12760
[27] S. S. Chai and K. L. Goh, “Daily Rainfall Forecasting Using Meteorology Data with Long Short-Term Memory (LSTM) Network,” Journal of Optimization in Industrial Engineering, vol. 15, no. 1, pp. 187–193, Jun. 2022, doi: 10.22094/joie.2021.1941252.1899.
[28] S. Muzaffar and A. Afshari, “Short-Term Load Forecasts Using LSTM Networks,” Energy Procedia, vol. 158, pp. 2922–2927, Feb. 2019, doi: 10.1016/j.egypro.2019.01.952.
[29] N. A. Putri and A. Wibowo, “Rainfall Maps For The Suitability Of Settlement Area In Bogor Raya,” EnviroScienteae, vol. 19, no. 2, pp. 123–129, May 2023, doi: 10.20527/es.v19i2.15116.
[30] R. Wulandari, T. Rahmawati, A. Asyary, and F. Nugraha, “Analysis of Climate and Environmental Risk Factors on Dengue Hemorrhagic Fever Incidence in Bogor District,” Kesmas, vol. 18, no. 3, pp. 209–214, Aug. 2023, doi: 10.21109/kesmas.v18i3.7351.
[31] E. Khyber, L. Syaufina, and A. Sunkar, “Variability and time series trend analysis of rainfall and temperature in Dramaga Sub-District, Bogor, Indonesia,” IOP Conf. Ser.: Earth Environ. Sci., vol. 771, no. 1, p. 012016, May 2021, doi: 10.1088/1755-1315/771/1/012016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Anggraini Fadhilah, Muhammad Abshor Dzulhij Rizki, Muhammad Ryan Azahran, Siti Arbaynah, Rakesha Putra Antique Yusuf, Yenni Angraini, Muhammad Rizky Nurhambali

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).