Aspect-Based Sentiment Analysis of Reviews for Pandawa Beach Using Naive Bayes and SVM Methods
DOI:
https://doi.org/10.30871/jaic.v9i2.9083Keywords:
Sentiment analysis, Google Maps, Support Vector Machine (SVM), Naive Bayes, Pandawa BeachAbstract
The presence of digital technology, especially online platforms such as Google Maps, has changed the way people search for information about tourist destinations, including reviews and ratings from previous visitors. Aspect-based sentiment analysis becomes a very useful tool to understand people's views and feelings towards a place or product based on the reviews given and identify aspects of interest to tourists visiting Pandawa Beach, by utilizing Naive Bayes and Support Vector Machine (SVM) methods. The main objective of this research is to identify sentiment patterns based on aspects such as attraction, accessibility, amenities, and ancillary. Data was collected and labeled according to sentiment and aspects, then processed using preprocessing techniques, extracted by bag-of-words method, and chi-square feature selection. The model evaluation results showed that SVM produced the highest F1-Score value of 79,625%, while the Naive Bayes method reached 73.29%.
Downloads
References
[1] K. D. Saputra, A. A. I. I. Paramitha, and P. A. C. Dewi, “Pembuatan dan Pendampingan Website Wisata Untuk Promosi Potensi Desa Manukaya Kabupaten Gianyar,” BERNAS J. Pengabdi. Kpd. Masy., vol. 5, no. 4, pp. 2497–2508, 2024, doi: https://doi.org/10.31949/jb.v5i4.11150.
[2] Badan Pusat Statistik, Statistik Kunjungan Wisatawan Mancanegara 2023. Badan Pusat Statistik, 2024.
[3] I. M. Suradnya, “Analisis Faktor-Faktor Daya Tarik Wisata Bali dan Implikasinya Terhadap Perencanaan Pariwisata Daerah Bali,” SOCA Sos. Ekon. Pertan., vol. 6, pp. 1–13, 2006.
[4] L. Ardiani, H. Sujaini, and Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” J. Sist. dan Teknol. Inf., vol. 8, no. 2, pp. 183–190, 2020, doi: 10.26418/justin.v8i2.36776.
[5] C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, pp. 422–430, 2021, doi: 10.30865/mib.v5i2.2845.
[6] H. Mustakim and S. Priyanta, “Aspect-Based Sentiment Analysis of KAI Access Reviews Using NBC and SVM,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 2, pp. 113–124, 2022, doi: 10.22146/ijccs.68903.
[7] R. T. Handayanto, Herlawati, P. D. Atika, F. N. Khasanah, A. Y. P. Yusuf, and D. Y. Septia, “Analisis Sentimen Pada Situs Google Review dengan Naïve Bayes dan Support Vector Machine,” J. Komtika (Komputasi dan Inform., vol. 5, no. 2, pp. 153–163, Nov. 2021, doi: 10.31603/komtika.v5i2.6280.
[8] R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” J. Media Inform. Budidarma, vol. 6, no. 2, pp. 777–785, 2022, doi: 10.30865/mib.v6i2.3566.
[9] F. Solikhah, M. Febianah, A. L. Kamil, and W. A. Arifin, “Analisis Perbandingan Algoritma Naive Bayes Dan C.45 Dalam Klasifikasi Data Mining Untuk Memprediksi Kelulusan,” Tematik, vol. 8, no. 1, pp. 96–103, 2021, doi: 10.38204/tematik.v8i1.576.
[10] S. Adi and A. Wintarti, “Komparasi Metode Support Vector Machine (SVM), K-Nearest Neighbors (KNN), dan Random Forest (RF) Untuk Prediksi Penyakit Gagal Jantung,” MATHunesa J. Ilm. Mat., vol. 10, no. 2, pp. 258–268, 2022, doi: 10.26740/mathunesa.v10n2.p258-268.
[11] F. Bei and S. Saepudin, “Analisis Sentimen Aplikasi Tiket Online Di Play Store Menggunakan Metode Support Vector Machine (SVM),” Sismatik, vol. 1, no. 1, pp. 91–97, 2021.
[12] S. I. Nurhafida and F. Sembiring, “Analisis Sentimen Aplikasi Novel Online Di Google Play Store Menggunakan Algoritma Support Vector Machine (SVM),” J. Sains Komput. Inform., vol. 6, no. 1, pp. 317–327, 2022.
[13] C. Cooper, J. Fletcher, A. Fyall, D. Gilbert, and S. Wanhill, Tourism: Principles and practice (2nd ed.). Longman, 1995.
[14] S. R. Febrianingrum, N. Miladan, and H. Mukaromah, “Faktor-Faktor Yang Mempengaruhi Perkembangan Pariwisata Pantai Di Kabupaten Purworejo,” J. Perenc. Wilayah, Kota, dan Pemukim., vol. 1, no. 2, pp. 130–142, 2019, doi: https://doi.org/10.20961/desa-kota.v1i2.14762.130-142.
[15] S. D. Prasetyo, S. S. Hilabi, and F. Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” KomtekInfo, vol. 10, no. 1, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.
[16] G. Radiena and A. Nugroho, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Kai Access Menggunakan Metode Support Vector Machine,” J. Pendidik. Teknol. Inf., vol. 6, no. 1, pp. 1–10, 2023, doi: 10.37792/jukanti.v6i1.836.
[17] N. A. Salsabila, Y. A. Winatmoko, A. A. Septiandri, and A. Jamal, “Colloquial Indonesian Lexicon,” Inst. Electr. Electron. Eng., 2018, doi: 10.1109/IALP.2018.8629151.
[18] M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022, doi: https://doi.org/10.31539/intecoms.v5i1.3708.
[19] Deepu, P. Raj, and Rajaraajeswari, “A Framework for Text Analytics using the Bag of Words (BoW) Model for Prediction,” Int. J. Adv. Netw. Appl., pp. 320–321, 2016.
[20] D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” Indones. J. Comput. Sci., vol. 12, no. 4, pp. 2173–2181, 2023, doi: 10.33022/ijcs.v12i4.3341.
[21] S. Diantika, “Penerapan Teknik Random Oversamping Untuk Mengatasi Imbalance Class Dalam Klasifikasi Website Phishing Menggunakan Algoritma LightGBM,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 19–25, 2023, doi: https://doi.org/10.36040/jati.v7i1.6006.
[22] A. Ahmad, W. Gata, and S. Panggabean, “Sentimen Analisis dengan Long Short-Term Memory dan Synthetic Minority Over Sampling Technic Pada Aplikasi Digital Perbankan,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 4, pp. 973–984, 2024, doi: https://doi.org/10.35870/jti k.v8i4.2320.
[23] A. Z. Amrullah, A. Sofyan Anas, and M. A. J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” J. BITe J. Bumigora Inf. Technol., vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.
[24] N. L. K. I. Pramesti, M. A. Raharja, N. A. S. ER, and I. G. A. Wibawa, “Analisis Sentimen Ulasan Aplikasi Solusi Kota Cerdas Menggunakan Algoritma Naïve Bayes dan Support Vector Machine ( SVM ) dengan Seleksi Fitur Chi-Square,” J. Elektron. Ilmu Komput. Udayana, vol. 13, no. 1, pp. 1045–1058, 2024.
[25] D. Aryanti, “Analisis Sentimen Ibukota Negara Baru Menggunakan Metode Naïve Bayes Classifier,” J. Inf. Syst. Res., vol. 3, no. 4, pp. 524–531, 2022, doi: 10.47065/josh.v3i4.1944.
[26] D. Rusdiaman and D. Rosiyadi, “Analisa Sentimen Terhadap Tokoh Publik Menggunakan Metode Naive Bayes Classifier dan Support Vector Machine,” J. Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 230–235, 2019, doi: https://doi.org/10.24114/cess.v4i2.13796.
[27] R. Noviana and I. Rasal, “Penerapan Algoritma Naive Bayes dan SVM untuk Analisis Sentimen Boy Band BTS Pada Media Sosial Twitter,” J. Tek. dan Sci. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: https://doi.org/10.56127/jts.v2i2.791.
[28] A. Faadhilah and H. Nugroho, “Pemetaan Daerah Rawan Longsor di Kabupaten Bandung Barat menggunakan Metode Machine Learning dengan Teknik SVM,” J. Teknol. Ramah Lingkung., vol. 8, no. 2, pp. 185–199, 2024, doi: https://doi.org/10.26760/jrh.V8i2.185-199.
[29] M. A. Ramadhan and R. Andarsyah, Klasifikasi Text Spam Menggunakan Metode Support Vector Machine Dan Naïve Bayes. Bandung: Penerbit Buku Pedia, 2022.
[30] J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf. Sci. (Ny)., vol. 507, pp. 772–794, 2020, doi: 10.1016/j.ins.2019.06.064.
[31] A. S. Sinaga, S. Ramen, and S. Mulyani, “Teknik Ensemble Dalam Machine Learning Untuk Menentukan Tingkat Akurasi Perkembangan Motorik Bayi 0-12 Bulan,” SAINTIKOM, vol. 23, no. 2, pp. 418–425, 2024, doi: https://doi.org/10.53513/jis.v23i2.10059.
[32] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, pp. 1–13, 2020, doi: 10.1186/s12864-019-6413-7.
[33] M. Bekkar, H. K. Djemaa, and T. A. Alitouche, “Evaluation Measures for Models Assessment over Imbalanced Data Sets,” J. Inf. Eng. Appl., vol. 3, no. 10, pp. 27–38, 2013.
[34] M. Cindo, D. P. Rini, and Ermatita, “Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) Literatur Review: Metode Klasifikasi Pada Sentimen Analisis,” SAINTEKS 2019, pp. 66–70, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Made Ayu Asri Oktarini Putri, I Wayan Sumarjaya, I Gusti Ngurah Lanang Wijayakusuma

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).