Prediction of Corrosion Inhibitor Efficiency Based on Quinoxaline Compounds Using Polynomial Regression

Authors

  • Bastion Jader Rana Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro,
  • Noor Ageng Setiyanto Research Center for Quantum Computing and Materials Informatics, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro
  • Muhamad Akrom Research Center for Quantum Computing and Materials Informatics, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30871/jaic.v9i2.9031

Keywords:

Corrosion inhibitors, Quinoxaline, Machine Learning, Polynomial, Gradient Boosting Regressor

Abstract

Corrosion is a natural process that leads to material degradation due to environmental factors. It significantly impacts financial and safety aspects, including structural weakening and economic losses in various industries such as oil, gas, and nuclear. Corrosion inhibitors, especially organic compounds like quinoxaline, are widely used to reduce corrosion by forming protective layers on metal surfaces. Quinoxaline compounds, characterized by their heterocyclic structure with nitrogen atoms, demonstrate promising inhibition efficiency in corrosive environments. In this study, machine learning (ML) approaches are utilized to predict the corrosion inhibition efficiency of quinoxaline compounds. Algorithms such as Gradient Boosting Regressor (GBR), Extreme Gradient Boosting Regressor (XGBR), and Automatic Relevance Determination (ARD) regression are compared. The implementation of polynomial functions significantly improves the prediction accuracy of these models. Among them, GBR achieved the best value with MSE, RMSE, MAE, MAPE, and R2 values of 0.0000001, 0.0003229, 0.0000029, 0.0002294, and 0.999999998, respectively. These findings highlight the potential of polynomial-enhanced ML models in accurately predicting corrosion inhibition efficiency. Moreover, the study demonstrates the viability of GBR as a reliable tool for analyzing and optimizing corrosion inhibitors for industrial applications.

Downloads

Download data is not yet available.

References

[1] B. Utomo, “Jenis Korosi Dan Penanggulangannya,” DOAJ (DOAJ: Directory of Open Access Journals), vol. 6, no. 2, 2009.

[2] Indra Surya Dalimunthe, “Kimia Dari Inhibitor Korosi,” e-USU Repository, 2004, Accessed: Nov. 15, 2024. [Online]. Available: http://repository.usu.ac.id/bitstream/123456789/1345/1/tkimia-indra3.pdf

[3] F. M. I. and J. P. U. M. Sugeng, “Analisis Perbedaan Laju Korosi Hasil Pengujian Weight Loss Dan Polarisasi Pada Pipa Dengan Pengujian Korosi Standar ASTM G59 dan ASTM G31,” Mar. 2022, Accessed: Nov. 15, 2024. [Online]. Available: https://jurnal.undira.ac.id/jurnaltera/article/view/148

[4] M. Akrom et al., “DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract,” Appl Surf Sci, vol. 615, p. 156319, 2023, doi: https://doi.org/10.1016/j.apsusc.2022.156319.

[5] M. Fajar Sidiq, “Analisa Korosi Dan Pengendaliannya,” Jurnal Foundry, Apr. 2013.

[6] B. Nuswantoro, “Analisis Remaining Life Dan Program Inspeksi Dengan Pendekatan Risk Management Pada Pipa Penyalur Gas,” Prosiding Sains Nasional dan Teknologi, vol. 1, Aug. 2018, doi: 10.36499/psnst.v1i1.2313.

[7] Soedyartomo Soentono, “Korosi di Industri Nuklir,” Widyanuklida, vol. 2, Jan. 1998, Accessed: Nov. 20, 2024. [Online]. Available: http://jurnal.batan.go.id/index.php/widyanuklida/article/download/1974/1869

[8] M. Akrom, S. Rustad, A. G. Saputro, and H. K. Dipojono, “Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors,” Comput Theor Chem, vol. 1229, p. 114307, 2023, doi: https://doi.org/10.1016/j.comptc.2023.114307.

[9] M. Akrom, “Investigation Of Natural Extracts As Green Corrosion Inhibitors In Steel Using Density Functional Theory,” Jurnal Teori dan Aplikasi Fisika, vol. 10, no. 1, pp. 89–102, Jan. 2022, [Online]. Available: https://jtaf.fmipa.unila.ac.id/index.php/jtaf/article/view/289

[10] M. Akrom, S. Rustad, A. G. Saputro, A. Ramelan, F. Fathurrahman, and H. K. Dipojono, “A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds,” Mater Today Commun, vol. 35, p. 106402, 2023, doi: https://doi.org/10.1016/j.mtcomm.2023.106402.

[11] B. S. H. F. and Y. T. Gogot Haryono, “Ekstrak Bahan Alam sebagai Inhibitor Korosi,” Jan. 2010, [Online]. Available: www.chem-is-try.org

[12] T. W. Quadri et al., “Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies,” Arabian Journal of Chemistry, vol. 15, no. 7, p. 103870, 2022, doi: https://doi.org/10.1016/j.arabjc.2022.103870.

[13] D. Gedefaw, M. Prosa, M. Bolognesi, M. Seri, and M. R. Andersson, “Recent Development of Quinoxaline Based Polymers/Small Molecules for Organic Photovoltaics,” Adv Energy Mater, vol. 7, no. 21, p. 1700575, Nov. 2017, doi: https://doi.org/10.1002/aenm.201700575.

[14] G. Rebala, A. Ravi, and S. Churiwala, “Machine Learning Definition and Basics,” in An Introduction to Machine Learning, G. Rebala, A. Ravi, and S. Churiwala, Eds., Cham: Springer International Publishing, 2019, pp. 1–17. doi: 10.1007/978-3-030-15729-6_1.

[15] A. H. Alamri, “Application of machine learning to stress corrosion cracking risk assessment,” Egyptian Journal of Petroleum, vol. 31, no. 4, pp. 11–21, 2022, doi: https://doi.org/10.1016/j.ejpe.2022.09.001.

[16] L. Yan, Y. Diao, Z. Lang, and K. Gao, “Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach,” Sci Technol Adv Mater, vol. 21, no. 1, pp. 359–370, Jan. 2020, doi: 10.1080/14686996.2020.1746196.

[17] Q. Li et al., “Determination of Corrosion Types from Electrochemical Noise by Gradient Boosting Decision Tree Method,” Int J Electrochem Sci, vol. 14, no. 2, pp. 1516–1528, 2019, doi: https://doi.org/10.20964/2019.02.72.

[18] M. Akrom, S. Rustad, and H. Kresno Dipojono, “Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors,” Results Chem, vol. 6, p. 101126, 2023, doi: https://doi.org/10.1016/j.rechem.2023.101126.

[19] S. Budi et al., “Implementation of Polynomial Functions to Improve the Accuracy of Machine Learning Models in Predicting the Corrosion Inhibition Efficiency of Pyridine-Quinoline Compounds as Corrosion Inhibitors,” KnE Engineering, Mar. 2024, doi: 10.18502/keg.v6i1.15351.

[20] M. Akrom et al., “Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi,” JoMMiT : Jurnal Multi Media dan IT, vol. 7, no. 1, pp. 015–020, Jul. 2023, doi: 10.46961/jommit.v7i1.721.

[21] Ahmad Harmain, P. Paiman, H. Kurniawan, K. Kusrini, and Dina Maulina, “Normalisasi Data Untuk Efisiensi K-Means Pada Pengelompokan Wilayah Berpotensi Kebakaran Hutan Dan Lahan Berdasarkan Sebaran Titik Panas,” TEKNIMEDIA: Teknologi Informasi dan Multimedia, vol. 2, no. 2, pp. 83–89, Jan. 2022, doi: 10.46764/teknimedia.v2i2.49.

[22] J. Shao, “Linear Model Selection by Cross-validation,” J Am Stat Assoc, vol. 88, no. 422, pp. 486–494, Jun. 1993, doi: 10.1080/01621459.1993.10476299.

[23] D. Berrar, “Cross-Validation,” 2018. doi: 10.1016/B978-0-12-809633-8.20349-X.

[24] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” Journal of Applied Informatics and Computing, vol. 4, pp. 45–51, May 2020, doi: 10.30871/jaic.v4i1.2017.

[25] Nurhayati, I. Soekarno, I. K. Hadihardaja, and M. Cahyono, “A study of hold-out and k-fold cross validation for accuracy of groundwater modeling in tidal lowland reclamation using extreme learning machine,” in 2014 2nd International Conference on Technology, Informatics, Management, Engineering & Environment, 2014, pp. 228–233. doi: 10.1109/TIME-E.2014.7011623.

[26] T. Wahyono, Fundamental of Python for Machine Learning: Dasar-Dasar Pemrograman Python untuk Machine Learning dan Kecerdasan Buatan. 2018.

[27] B. Siswoyo, “MultiClass Decision Forest Machine Learning Artificial Intelligence,” Journal of Applied Informatics and Computing, vol. 4, no. 1, Jan. 2020, doi: 10.30871/jaic.v4i1.1155.

[28] S. P. Nainggolan and A. Sinaga, “Comparative Analysis Of Accuracy Of Random Forest And Gradient Boosting Classifier Algorithm For Diabetes Classification,” Sebatik, vol. 27, no. 1, pp. 97–102, Jun. 2023, doi: 10.46984/sebatik.v27i1.2157.

[29] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD ’16. New York, NY, USA: Association for Computing Machinery, 2016, pp. 785–794. doi: 10.1145/2939672.2939785.

[30] T. Van Gestel, J. Suykens, B. De Moor, and J. Vandewalle, Automatic Relevance Determination for Least Squares Support Vector Machine regression, vol. 4. 2001. doi: 10.1109/IJCNN.2001.938745.

[31] I. P. Artaya, S. Soebandhi, A. Alimudin, S. Nilowardono, and M. Kamisutara, Ekonometrika Pemodelan Analisa Regresi Jenis dan Penerapannya. Eureka Media Aksara, 2023.

[32] F. Ayuningsih, S. Malikah, M. R. Nugroho, W. Winarti, B. Murtiyasa, and S. Sumardi, “Pembelajaran Matematika Polinomial Berbasis STEAM PjBL Menumbuhkan Kreativitas Peserta Didik,” Jurnal Basicedu, vol. 6, no. 5, pp. 8175–8187, Jun. 2022, doi: 10.31004/basicedu.v6i5.3660.

Downloads

Published

2025-03-15

How to Cite

[1]
B. J. Rana, N. A. Setiyanto, and M. Akrom, “Prediction of Corrosion Inhibitor Efficiency Based on Quinoxaline Compounds Using Polynomial Regression”, JAIC, vol. 9, no. 2, pp. 376–381, Mar. 2025.

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.