Real-Time Visitor Counting with Dynamic Facial Recognition using Python and Machine Learning

  • I Made Bhaskara Gautama Institut Teknologi dan Bisnis STIKOM Bali
  • I Gusti Ngurah Wikranta Arsa Institut Teknologi dan Bisnis STIKOM Bali
  • I Made Arya Budhi Saputra Institut Teknologi dan Bisnis STIKOM Bali
  • IGKG Puritan Wijaya Institut Teknologi dan Bisnis STIKOM Bali
  • Dewa Gede Yudisena Nanda Sutha Institut Teknologi dan Bisnis STIKOM Bali
Keywords: Computer Vision, Face Recognition, Machine Learning, Visitor Counter

Abstract

Visitor data or the number of visitors at a particular location is crucial information to be obtained. This data can serve various purposes, particularly in enhancing customer satisfaction. For instance, predicting the number of visitors at tourist destinations enables tourism management to be better prepared for welcoming and providing optimal services to arriving visitors. Visitor count data can also be employed to automatically restrict visitors during the COVID-19 pandemic, ensuring a safe and comfortable environment with limited attendees. To acquire visitor data, a system capable of accurate visitor detection is required. This research utilizes computer vision to detect visitor faces. The developed system, programmed in Python, functions by detecting visitor faces and conducting a count based on the detected faces. To prevent the same visitor from being detected multiple times, a facial recognition method with dynamic facial data collection is implemented in this study. The constructed system successfully counted 27 out of 28 visitors over a two-day period. However, the system has limitations, particularly in terms of the restricted detection area. Therefore, a physical mechanism mandating visitors to undergo facial scanning and registration needs to be established, ensuring recorded data corresponds to the actual visitor count.

Downloads

Download data is not yet available.

References

Almuttaqin and M. Nasir, “Rancang Bangun Alat Penghitung Jumlah Pengunjung Di Perpustakaan Politeknik Negeri Bengkalis Berbasis Mikrokontroler,” in Seminar Nasional Industri dan Teknologi (SNIT), 2021, pp. 385–394.

M. Fahmawaty, M. Royhan, and Mahmudin, “Perancangan Alat Penghitung Jumlah Pengunjung Di Perpustakaan Unis Tangerang Menggunakan Sensor Pir Berbasis IoT,” JIMTEK : Jurnal Ilmiah Fakultas Teknik, vol. 1, no. 3, pp. 253–261, 2020, [Online]. Available: www.thingspeak.com

A. Atika Sari, I. Fitrianto Rahmad, and F. Tambunan, “Perancangan Dan Implementasi System Pendeteksi Pengunjung Pada Toko Berbasis Arduino,” Jurnal FTIK, vol. 1, no. 1, pp. 417–428, 2020, [Online]. Available: http://e-journal.potensi-utama.ac.id/ojs/index.php/FTIK/article/view/877

I. M. B. Gautama, I. G. N. W. Arsa, and N. P. V. Savita, “Visitor Counter and Information Viewer at Photo Exhibitions using Embedded Systems and Web Services,” Paradigma - Jurnal Komputer dan Informatika, vol. 24, no. 2, pp. 152–159, Sep. 2022, doi: 10.31294/paradigma.v24i2.1430.

M. N. Inrawansyah, “Implementasi Face Detection Menggunakan Metode Viola Jones Untuk Membantu Mempermudah Proses Counter Pengunjung Gedung,” Jurnal Mahasiswa Teknik Informatika), vol. 1, no. 1, pp. 8–16, 2017.

R. A. P, S. Achmadi, and K. Auliasari, “Penerapan Metode Convolutional Neural Network pada Aplikasi Deteksi Wajah Pengunjung Perpustakaan,” Jurnal Mahasiswa Teknik Informatika, vol. 6, no. 1, pp. 253–258, 2022.

A. Rahim, A. Rahajoe, and M. Mahaputra, “Prediksi Jumlah Pengunjung Perperiode Terhadap Tempat Wisata Pantai Menggunakan Triple Exponential Smoothing (Studi Kasus Pantai Gili Labak Sumenep),” Jurnal Ilmiah Teknologi Informasi dan Robotika, vol. 3, no. 2, pp. 39–43, Dec. 2021, doi: 10.33005/jifti.v3i2.66.

M. Heri Saputra, D. Erwanto, and R. Fatkhur Rizal, “Penghitung Jumlah Pengunjung Objek Wisata Dengan Metode Deep Learning MobileNet-SSD,” Techné : Jurnal Ilmiah Elektroteknika, vol. 21, no. 2, pp. 145–154, Sep. 2022, doi: 10.31358/techne.v21i2.313.

D. C. Rini, A. Z. Arifin, A. Fanani, G. B. D. Prasanda, and W. N. P. Sunaryo, “Penerapan Fuzzy Inference System dalam Pengoptimalan Suhu Ruangan pada Double Air Conditioner (AC) Secara Otomatis,” MathVision : Jurnal Matematika, vol. 1, no. 1, pp. 11–16, Mar. 2019, [Online]. Available: http://journal.unirow.ac.id/index.php/mv/article/view/52

R. Prathivi and Y. Kurniawati, “Sistem Presensi Kelas Menggunakan Pengenalan Wajah Dengan Metode Haar Cascade Classifier,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 11, no. 1, pp. 135–142, 2020.

M. W. Septyanto, H. Sofyan, H. Jayadianti, O. S. Simanjuntak, and D. B. Prasetyo, “Aplikasi Presensi Pengenalan Wajah Dengan Menggunakan Algoritma Haar Cascade Classifier,” Telematika: Jurnal Informatika dan Teknologi Informasi, vol. 16, no. 2, pp. 87–96, 2020.

S. P. Putra, I. Fitri, and S. Ningsih, “Absensi Pengenalan Wajah Menggunakan Menggunakan Algoritma Eigenface Berbasis Web,” Journal of Applied Informatics and Computing, vol. 5, no. 1, Feb. 2021, doi: 10.30871/jaic.v5i1.2711.

A. Jamhari, “Perancangan Sistem Pengenalan Wajah Secara Real-Time pada CCTV dengan Metode Eigenface,” INISTA (Journal of Informatics Information System Software Engineering and Applications), vol. 2, no. 2, pp. 20–32, 2020.

H. Muchtar and R. Apriadi, “Implementasi pengenalan wajah pada sistem penguncian rumah dengan metode template matching menggunakan open source computer vision library (opencv),” RESISTOR (elektRonika kEndali telekomunikaSI tenaga liSTrik kOmputeR), vol. 2, no. 1, pp. 39–42, 2019.

R. A. Pratama, S. Achmadi, and K. Auliasari, “Penerapan Metode Convolutional Neural Network pada Aplikasi Deteksi Wajah Pengunjung Perpustakaan,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 1, pp. 253–258, 2022.

A. Adouani, W. M. Ben Henia, and Z. Lachiri, “Comparison of Haar-like, HOG and LBP approaches for face detection in video sequences,” in 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), 2019, pp. 266–271. doi: 10.1109/SSD.2019.8893214.

C. Rahmad, R. A. Asmara, D. R. H. Putra, I. Dharma, H. Darmono, and I. Muhiqqin, “Comparison of Viola-Jones Haar Cascade classifier and histogram of oriented gradients (HOG) for face detection,” in IOP conference series: materials science and engineering, 2020, p. 12038.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), 2005, pp. 886–893.

G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database forstudying face recognition in unconstrained environments,” in Workshop on faces in’Real-Life’Images: detection, alignment, and recognition, 2008.

V. Thakur, “Celebrity Face Image Dataset,” Sep. 13, 2022. https://www.kaggle.com/datasets/vishesh1412/celebrity-face-image-dataset (accessed Jul. 03, 2023).

V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of regression trees,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 1867–1874.

G. Zhang, H. Qin, Y. Ke, J. Chen, and Y. Gong, “Phased groupwise face alignment,” IEEE Access, vol. 8, pp. 62415–62422, 2020.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815–823. doi: 10.1109/CVPR.2015.7298682.

S. Ghosh, A. Dasgupta, and A. Swetapadma, “A Study on Support Vector Machine based Linear and Non-Linear Pattern Classification,” in 2019 International Conference on Intelligent Sustainable Systems (ICISS), 2019, pp. 24–28. doi: 10.1109/ISS1.2019.8908018.

E. O. Akay, K. O. Canbek, and Y. Oniz, “Automated Student Attendance System Using Face Recognition,” in 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2020, pp. 1–5. doi: 10.1109/ISMSIT50672.2020.9255052.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 2001, pp. I–I. doi: 10.1109/CVPR.2001.990517.

Y. Zhang et al., “Research and Application of AdaBoost Algorithm Based on SVM,” in 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2019, pp. 662–666. doi: 10.1109/ITAIC.2019.8785556.

N. Francis Leena Mary and Sreenath, “Pre-processing Techniques for Detection of Blurred Images,” in Proceedings of International Conference on Computational Intelligence and Data Engineering, N. and S. A. and D. N. C. Chaki Nabendu and Devarakonda, Ed., Singapore: Springer Singapore, 2019, pp. 59–66.

Published
2023-11-29
How to Cite
[1]
I. M. B. Gautama, I. G. N. W. Arsa, I. M. A. B. Saputra, I. P. Wijaya, and D. G. Y. N. Sutha, “Real-Time Visitor Counting with Dynamic Facial Recognition using Python and Machine Learning”, JAIC, vol. 7, no. 2, pp. 128-135, Nov. 2023.
Section
Articles