Implementation of SVM Algorithm to Predict Song Popularity based on Sentiment Analysis of Lyrics

Authors

  • Quiin Latifah Almatin Lubis Universitas Amikom Yogyakarta
  • Arif Akbarul Huda Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i2.8978

Keywords:

sentiment analysis, song lyrics, support vector machine, popularity prediction

Abstract

Independent musicians face significant challenges in enhancing the visibility and appeal of their work amid intense competition on music streaming platforms. Although numerous studies have been conducted to analyze and predict song popularity, most of them focus on English-language songs. This creates a research gap for Indonesian-language songs, particularly in the context of predicting popularity based on lyrics. The dataset used includes 652 Indonesian songs from 2017 to 2024. The research methodology includes data pre-processing, feature extraction using TF-IDF, handling data imbalance with SMOTE, implementing SVM, and model optimization. The results show an improvement in model accuracy from 84% to 89% after parameter optimization using GridSearchCV. In the model evaluation with 5-fold cross-validation, an average accuracy of 86.19% with a standard deviation of 0.90% was obtained. Precision, Recall, and F1-score metrics for the Less Popular class are 0.98, 0.85, and 0.91; for the Moderately Popular class, 0.79, 0.95, and 0.86; and for the Very Popular class, 0.92, 0.86, and 0.89. The implementation of the model in a Streamlit application allows for the prediction of song popularity based on lyrics, providing valuable insights for musicians in choosing word choices that can potentially increase the popularity of their songs.

Downloads

Download data is not yet available.

References

[1] Kompasiana.com, “Analisis Tren Musik di Platform Streaming,” KOMPASIANA. Accessed: Nov. 06, 2024. [Online]. Available: https://www.kompasiana.com/juliarni53946/66908c53c925c472f5369972/analisis-tren-musik-di-platform-streaming

[2] S. Marlia, K. Setiawan, and C. Juliane, “Analysis of Music Features and Song Popularity Trends on Spotify Using K-Means and CRISP-DM,” SISTEMASI, vol. 13, no. 2, p. 595, Mar. 2024, doi: 10.32520/stmsi.v13i2.3757.

[3] H. Agatha, F. P. Putri, and A. Suryadibrata, “Sentiment Analysis on Song Lyrics for Song Popularity Prediction Using BERT Algorithm”.

[4] R. A. Nender, P. Rumengan, and G. Latuni, “Struktur Musik Lagu-Lagu Koes Plus Dan Pengaruhnya Terhadap Popularitas Dan Kelestariannya,” Kompetensi, vol. 1, no. 01, pp. 228–237, Dec. 2022, doi: 10.53682/kompetensi.v1i01.1803.

[5] I. Sharma, “Hit Song Classification With Audio Descriptors And Lyrics”.

[6] H. Sastypratiwi, H. Muhardi, and M. Noveanto, “Klasifikasi Emosi Pada Lirik Lagu Menggunakan Algoritma Multiclass SVM dengan Tuning Hyperparameter PSO,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 4, p. 2279, Oct. 2022, doi: 10.30865/mib.v6i4.4609.

[7] D. D. Nur Cahyo et al., “Sentiment Analysis for IMDb Movie Review Using Support Vector Machine (SVM) Method,” Inf. J. Ilm. Bid. Teknol. Inf. Dan Komun., vol. 8, no. 2, pp. 90–95, Mar. 2023, doi: 10.25139/inform.v8i2.5700.

[8] B. Rakajati and E. Y. Hidayat, “Perbandingan Metode Naive Bayes dan Support Vector Machine Pada Klasifikasi 22 Bahasa Daerah,” J. MEDIA Inform. BUDIDARMA, vol. 8, no. 1, p. 221, Jan. 2024, doi: 10.30865/mib.v8i1.7236.

[9] “Home | Spotify for Developers.” Accessed: Nov. 12, 2024. [Online]. Available: https://developer.spotify.com/

[10] G. Cahyani, W. Widayani, S. D. Anggita, Y. Pristyanto, I. Ikmah, and A. Sidauruk, “Klasifikasi Data Review IMDb Berdasarkan Analisis Sentimen Menggunakan Algoritma Support Vector Machine,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 3, p. 1418, Jul. 2022, doi: 10.30865/mib.v6i3.4023.

[11] D. Oktavia and Y. R. Ramadahan, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM)”.

[12] T. Safitri, Y. Umaidah, and I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine”, JAIC, vol. 7, no. 1, pp. 34–41, Jul. 2023.

[13] E. Harieby, H. Hoiriyah, and M. Walid, “Twitter Text Mining Mengenai Isu Vaksinasi Covid-19 Menggunakan Metode Term Frequency, Inverse Document Frequency (TF-IDF),” JATI J. Mhs. Tek. Inform., vol. 6, no. 2, pp. 532–537, Aug. 2022, doi: 10.36040/jati.v6i2.5129.

[14] Hermanto, A. Y. Kuntoro, T. Asra, E. B. Pratama, L. Effendi, and R. Ocanitra, “Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm And Support Vector Machine Based Smote Technique,” J. Phys. Conf. Ser., vol. 1641, no. 1, p. 012102, Nov. 2020, doi: 10.1088/1742-6596/1641/1/012102.

[15] R. N. Ikhsani and F. F. Abdulloh, “Optimasi SVM dan Decision Tree Menggunakan SMOTE Untuk Mengklasifikasi Sentimen Masyarakat Mengenai Pinjaman Online,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 4, p. 1667, Oct. 2023, doi: 10.30865/mib.v7i4.6809.

[16] R. M. R. W. P. K. Atmaja and W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru Dengan Metode BERT (Bidirectional Encoder Representations from Transformers),” J. Emerg. Inf. Syst. Bus. Intell. JEISBI, vol. 2, no. 3, Jul. 2021, Accessed: Nov. 14, 2024. [Online]. Available: https://ejournal.unesa.ac.id/index.php/JEISBI/article/view/41567

[17] D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” vol. 5, 2021.

[18] M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” Aug. 13, 2020, arXiv: arXiv:2008.05756. Accessed: Nov. 14, 2024. [Online]. Available: http://arxiv.org/abs/2008.05756

[19] J. Setyanto and T. B. Sasongko, “Sentiment Analysis of Sirekap Application Users Using the Support Vector Machine Algorithm,” J. Appl. Inform. Comput., vol. 8, no. 1, pp. 71–76, Jul. 2024, doi: 10.30871/jaic.v8i1.7772.

[20] S. Patil and V. Lokesha, “Live Twitter Sentiment Analysis Using Streamlit Framework,” SSRN Electron. J., 2022, doi: 10.2139/ssrn.4119949.

[21] A. Nasrulloh and G. Nahumarury, “Development of a Web-Based Automatic Sentiment Analysis Application using Support Vector Machine (SVM) Model”.

Downloads

Published

2025-03-10

How to Cite

[1]
Q. L. A. Lubis and A. A. Huda, “Implementation of SVM Algorithm to Predict Song Popularity based on Sentiment Analysis of Lyrics”, JAIC, vol. 9, no. 2, pp. 265–272, Mar. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.