Sentiment Analysis of Online Vehicle Tax Renewal Application Users Using Support Vector Machine Algorithm
Abstract
This study examines user sentiment towards online vehicle tax renewal applications by utilizing the Support Vector Machine (SVM) algorithm. The data was collected from user reviews on the Google Play Store for three major applications: New Sakpole, Sapawarga, and Timsalut. The reviews were preprocessed through steps including normalization, case folding, tokenization, and stopword removal. The SVM algorithm was then applied to classify the reviews into positive or negative sentiments. A comparative analysis was performed with K-Nearest Neighbors (KNN) and Naïve Bayes, with SVM demonstrating the best performance, achieving an accuracy of 76.5%. In addition to accuracy, metrics such as precision, recall, and F1-score were also evaluated to provide a more comprehensive assessment of the models. The results indicate that while these applications help facilitate vehicle tax payments, there remains significant user dissatisfaction, particularly related to technical issues and usability concerns. This study offers valuable insights for application developers, highlighting areas for improvement in functionality and user experience to better meet public expectations.
Downloads
References
M. S. Nasir, “Analisis Sumber-Sumber Pendapatan Asli Daerah Setelah Satu Dekadeotonomi Daerah,” J. Din. Ekon. Pembang., vol. 2, no. 1, p. 30, 2019, doi: 10.14710/jdep.2.1.30-45.
D. Mulyono and M. Riyanto, “Optimalisasi Aplikasi Administrasi Kendaraan Pajak Online (Sakpole) Dalam Upaya Meningkatkan Pelayanan Pajak Kendaraan,” Cita Huk. Indones., pp. 174–187, 2023.
N. Fajriyanti, R. Kusumadewi, and F. P. Wahyu, “Efektivitas Sistem Pemungutan Pajak Kendaraan Bermotor Melalui Online (E-Samsat) Pada Pusat Pengelolaan Pendapatan Daerah Wilayah Kabupaten Bandung I Rancaekek,” J. Dialekt. J. Ilmu Sos., vol. 20, no. 2, pp. 95–109, 2022, doi: 10.54783/dialektika.v20i2.74.
A. W. Finaka, “Indonesia Produsen Kendaraan Bermotor TERBESAR.”
A. Mulyawan and D. Novia, “Aplikasi Pembayaran Pajak Kendaraan Bermotor Online Berbasis Web (Studi Kasus di Samsat Soreang Kab. Bandung),” J. Comput. Bisnis, vol. 10, no. 1, pp. 30–39, 2016.
M. I. Ramdhan, M. I. Nurdiansyah, and N. N. Amalia, “Analisis Sentimen Komentar Pengguna Mobile JKN di Google Play Store,” vol. 39, pp. 92–100, 2024.
P. L. B. P. Jateng, “New Sakpole,” Google Play Store.
P. P. J. Barat, “Sapawarga,” Google Play Store.
B. P. Sulut, “Timsalut,” Google Play Store.
T. Safitri, Y. Umaidah, and I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 28–35, 2023, doi: 10.30871/jaic.v7i1.5039.
A. N. Syafia, M. F. Hidayattullah, and W. Suteddy, “Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 207–212, 2023, doi: 10.30591/jpit.v8i3.5064.
A. Salma and W. Silfianti, “Sentiment Analysis of User Review on COVID-19 Information Applications Using Naïve Bayes Classifier, Support Vector Machine, and K-Nearest Neighbors,” Int. Res. J. Adv. Eng. Sci., vol. 6, no. 4, pp. 158–162, 2021.
H. P. Doloksaribu and Yusran Timur Samuel, “Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 16, no. 1, pp. 1–11, 2022, doi: 10.47111/jti.v16i1.3747.
R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” J. Teknol. Terpadu, vol. 9, no. 1, pp. 42–48, 2023, doi: 10.54914/jtt.v9i1.609.
R. Merdiansah, S. Siska, and A. Ali Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 221–228, 2024, doi: 10.55338/jikomsi.v7i1.2895.
A. Hermawan, I. Jowensen, J. Junaedi, and Edy, “Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine,” JST (Jurnal Sains dan Teknol., vol. 12, no. 1, pp. 129–137, 2023, doi: 10.23887/jstundiksha.v12i1.52358.
G. R. Ditami, E. F. Ripanti, and H. Sujaini, “Implementasi Support Vector Machine untuk Analisis Sentimen Terhadap Pengaruh Program Promosi Event Belanja pada Marketplace,” J. Edukasi dan Penelit. Inform., vol. 8, no. 3, p. 508, 2022, doi: 10.26418/jp.v8i3.56478.
“Sentiment Analysis of pegipegi.com Review on Google Play Store with Naïve Bayes,” Progr. Stud. Sist. Inf. Fak. Tek. dan Ilmu Komput., vol. Vol 13, No, 2024.
N. Cahyono and Dewi Setiyawati, “Analisis Sentimen Pengguna Sosial Media Twitter Terhadap Perokok Di Indonesia,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 262–272, 2023, doi: 10.33022/ijcs.v12i1.3154.
D. Safryda Putri and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Pospay Dengan Algoritma Support Vector Machine,” J. Ilm. Inform., vol. 11, no. 01, pp. 32–40, 2023, doi: 10.33884/jif.v11i01.6611.
B. Gaye, D. Zhang, and A. Wulamu, “Improvement of Support Vector Machine Algorithm in Big Data Background,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/5594899.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.
T. Turki and S. S. Roy, “Novel Hate Speech Detection Using Word Cloud Visualization and Ensemble Learning Coupled with Count Vectorizer,” Appl. Sci., vol. 12, no. 13, 2022, doi: 10.3390/app12136611.
M. A. Muslim et al., “Support Vector Machine (SVM) Optimization Using Grid Search and Unigram to Improve E-Commerce Review Accuracy,” J. Soft Comput. Explor., vol. 1, no. 1, pp. 8–15, 2020, doi: 10.52465/joscex.v1i1.3.
B. F. S. Supriyanto and S. Rosalin, “Analisis Sentimen Program Merdeka Belajar dengan Text Analysis Wordcloud & Word Frequency,” J. Minfo Polgan, vol. 12, no. 1, pp. 25–32, 2023, doi: 10.33395/jmp.v12i1.12312.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.
D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić, “Multi-label Classifier Performance Evaluation with Confusion Matrix,” pp. 01–14, 2020, doi: 10.5121/csit.2020.100801.
Copyright (c) 2024 Muhamad Ilham Fauzy, Ferian Fauzi Abdulloh
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).