Classification of Brain Tumors by Using a Hybrid CNN-SVM Model
Abstract
Brain tumors are diseases that involve the growth of brain cells, causing abnormalities in the brain region. An MRI scan is a useful tool for tumor detection. Researchers can process the obtained image data to conduct research capable of detecting brain tumor disease. Classifying brain tumors facilitates effort, planning, and accurate diagnosis, enabling the formulation and evaluation of treatment options for a patient with a brain tumor. The research was conducted to classify whether or not there was a tumor in the brain by using a combination of algorithms, namely CNN, to extract features from image data and then use SVM as a classification. CNN is a popular algorithm that deals very effectively with the complexity and variation of image data, whereas SVM is an algorithm for classification that maximizes margins and generalizations to produce accurate classifications. The project's goal is to create a hybrid model that can classify two labels based on image preprocessing processes, feature extraction, and brain tumor image data classification. In this study, the results of the CNN-SVM hybrid were able to obtain the highest score with Adam optimization and learning rate 0.001, accuracy of 98.92%, precision 98.92%, recall 98.92%, and f1-score 98.92%.
Downloads
References
K. K. Parhi and N. K. Unnikrishnan, "Brain-Inspired Computing: Models and Architectures," in IEEE Open Journal of Circuits and Systems, vol. 1, pp. 185-204, 2020, doi: 10.1109/OJCAS.2020.3032092.
V. Essianda, A. D. Indrasari, P. Widyastuti, T. Syahla, and R. Rohadi, “Brain Tumor : Molecular Biology, Pathophysiology, and Clinical Symptoms,” Jurnal Biologi Tropis, vol. 23, no. 4, pp. 260–269, Sep. 2023, doi: 10.29303/jbt.v23i4.5585.
World Health Organization, “Brain Health.” Accessed: Jun. 27, 2024. [Online]. Available: https://www.who.int/health-topics/brain-health#tab=tab_1
R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” 2021. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
H. Pengobatan Klinis, M. Ghozali, H. Sumarti, K. Kunci, T. Otak, and O. Dewasa, “Pengobatan Klinis Tumor Otak pada Orang Dewasa,” Jurnal Pendidikan Fisika dan Fisika Terapan, vol. 6, no. 1, p. 2020, 2020.
M. N. M. Hakim, A. B. Nugroho, and A. E. Minarno, “Prediksi Tumor Otak Menggunakan Metode Convolutional Neural Network,” Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 17, no. 1, p. 48, Jul. 2023, doi: 10.30872/jim.v17i1.5246.
K. C. Kirana, A. M. Nidhom, A. F. Fadhlullah, G. Carlos, P. Siregar, and H. Bagus Begananda, “TEKNO Jurnal Teknologi Elektro dan Kejuruan Klasifikasi Penyakit Tumor Otak Menggunakan K-Nearest Neighbour Berbasis Grey Level Coocurence Matrix,” 2023. [Online]. Available: http://journal2.um.ac.id/index.php/tekno
M. S. Liyananta, M. Shata, N. Latifah, F. Bimantoro, and T. Informatika, “Program Studi Teknik Informatika,” 2024. [Online]. Available: https://www.kaggle.com/datasets/thomasdubail/brain-tumors-256x256
A. Agung Mujiono, E. Yulia Puspaningrum Informatika, U. Pembangunan Nasional, J. Timur Jl Raya Rungkut Madya, and G. Anyar, “Implementasi Model Hybrid CNN-SVM Pada Klasifikasi Kondisi Kesegaran Daging Ayam,” 2024.
M. N. Winnarto, M. Mailasari, and A. Purnamawati, “Klasifikasi Jenis Tumor Otak Menggunakan Arsitekture Mobilenet V2,” Jurnal SIMETRIS, vol. 13, no. 2, 2022.
A. I. C. Sukandar, F. T. Anggraeny, and M. H. P. Swari, “3557-Article Text-12948-1-10-20240610,” ANTIVIRUS: Jurnal Ilmiah Teknik Informatika, vol. 18, no. 1, 2024.
R. Rakhman Wahid, F. Tri Anggraeni, and B. Nugroho, “Brain Tumor Classification with Hybrid Algorithm Convolutional Neural Network-Extreme Learning Machine,” 2021.
K. C. Kirana, A. M. Nidhom, A. F. Fadhlullah, G. Carlos, P. Siregar, and H. Bagus Begananda, “TEKNO Jurnal Teknologi Elektro dan Kejuruan Klasifikasi Penyakit Tumor Otak Menggunakan K-Nearest Neighbour Berbasis Grey Level Coocurence Matrix,” 2023. [Online]. Available: http://journal2.um.ac.id/index.php/tekno
R. Yohannes and M. E. Al Rivan, “Klasifikasi_Jenis_Kanker_Kulit_Menggunakan_CNN-SVM,” Jurnal Algoritme, vol. 2, no. 2, 2022.
B. W. Kurniadi, H. Prasetyo, G. L. Ahmad, B. Aditya Wibisono, and D. Sandya Prasvita, Analisis Perbandingan Algoritma SVM dan CNN untuk Klasifikasi Buah. 2021.
A. Sandy Wardhani, F. Tri Anggraeny, and A. Mustika Rizki, “Penerapan Model Hibrida Cnn-Knn Untuk Klasifikasi Penyakit Mata,” 2024.
S. Firmansyah, J. Gaol, and S. B. Susilo, “Comparison of SVM and Decision Tree Classifier with Object Based Approach for Mangrove Mapping to Sentinel-2B Data on Gili Sulat, Lombok Timur,” Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, vol. 9, no. 3, pp. 746–757, 2019, doi: 10.29244/jpsl.9.3.746-757.
Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 11, no. 3, pp. 394–399, Dec. 2022, doi: 10.32736/sisfokom.v11i3.1502.
M. Muchtar and R. A. Muchtar, “Perbandingan Metode Knn Dan Svm Dalam Klasifikasi Kematangan Buah Mangga Berdasarkan Citra Hsv Dan Fitur Statistik,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4010.
Y. Yohannes, D. Udjulawa, and F. Febbiola, “Klasifikasi Lukisan Karya Van Gogh Menggunakan Convolutional Neural Network-Support Vector Machine,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, Apr. 2021, doi: 10.28932/jutisi.v7i1.3399.
A. Desiani, Irmeilyana, H. Hanum, and A. Yuli, “Penerapan Metode Support Vector Machine Dalam Klasifikasi Bunga Iris,” IJAI (Indonesian Journal of Applied Informatics), vol. 7, no. 1, 2022.
Copyright (c) 2024 Talitha Safa Nabila
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).