Comparison of EfficientNetB7 and MobileNetV2 in Herbal Plant Species Classification Using Convolutional Neural Networks

  • Seno Arnandito Universitas AMIKOM Yogyakarta
  • Theopilus Bayu Sasongko Universitas Amikom Yogyakarta
Keywords: Efficientnetb7, Mobilenetv2, Convolutional Neural Networks, Herbal Plant Classification, Automatic Plant Recognition

Abstract

This study compares the performance of EfficientNetB7 and MobileNetV2 in classifying herbal plant species using Convolutional Neural Networks (CNNs). The primary objective was to automatically identify herbal plant species with high accuracy. Based on the evaluation results, both EfficientNetB7 and MobileNetV2 achieved approximately 98% accuracy in recognizing herbal plant species. While both models demonstrated excellent performance in precision, recall, and F1-score for most plant species, EfficientNetB7 showed a slight edge in some evaluation metrics. These findings provide valuable insights into the potential implementation of CNN architectures in automatic plant recognition applications, particularly for developing widely applicable web-based systems for herbal plant identification.

Downloads

Download data is not yet available.

References

Grenvilco et al, “Vol. 16 No. 3 / Juli - September 2023,” Pemanfaat. Tanam. Herb. Sebagai Obat Tradis. Untuk Kesehat. Masy. Di Desa Guaan Kec. Mooat Kabupaten Bolaang Mongondow Timur, vol. 16, no. 3, pp. 1–20, 2023.

M. I. Rahayu, R. Jaenal, and M. H. Risyandi, “Identifikasi Tanaman Obat Herbal Berbasis Citra,” J. Teknol. Inf. dan Komunikas, vol. 12, no. 2, pp. 57–63, 2023, [Online]. Available: https://www.researchgate.net/publication/377158403

B. Setiyono et al., “Identifikasi Tanaman Obat Indonesia Melalui Citra Daun Menggunakan Metode Convolutional Neural Network (CNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 385–392, 2023, doi: 10.25126/jtiik.20231026809.

K. U. S. D. Reddy, A. Shaik, A. Balasundaram, M. S. Nithin, L. S. R. Kakarla, and S. Noor Mahammad, “Classification of Indian Medicinal Leaves using Transfer Learning based Convolutional Neural Networks,” in 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), 2022, pp. 1050–1058. doi: 10.1109/ICOSEC54921.2022.9952074.

S. A. E. ALBAKIA and R. A. Saputra, “Identifikasi Jenis Daun Tanaman Obat Menggunakan Metode Convolutional Neural Network (CNN) Dengan Model VGG16,” J. Inform. Polinema, vol. 9, no. 4, pp. 451–460, 2023, doi: 10.33795/jip.v9i4.1420.

A. M. Atha and E. Zuliarso, “Deteksi Tanaman Herbal Khusus Untuk Penyakit Kulit Dan Penyakit Rambut Menggunakan Convolutional Neural Network (CNN) Dan Tensorflow,” J. JUPITER, vol. 4 (2), pp. 1–10, 2022.

R. Inggi, M. Mardin, M. Siregar, and A. Asmira, “Sistem Informasi Pemanfaatan Tanaman Herbal Untuk Pengobatan Berbasis Android,” Simkom, vol. 8, no. 1, pp. 39–54, 2023, doi: 10.51717/simkom.v8i1.101.

L. Listyalina, I. Buyung, A. Q. Munir, I. Mustiadi, and D. A. Dharmawan, “Conv-Tire: Tire Feasibility Assessment using Convolutional Neural Networks Conv-Tire: Asesmen Kelayakan Ban berbasis Convolutional Neural Network,” J. Inform. dan Teknol. Inf., vol. 19, no. 3, pp. 323–336, 2022, doi: 10.31515/telematika.v19i3.7697.

A. M. ATHA, “Dataset Tanaman Herbal,” www.kaggle.com. Accessed: May 02, 2024. [Online]. Available: https://www.kaggle.com/datasets/anefiamutiaraatha/dataset-tanaman-herbal/data

P. Purwanto and S. Sumardi, “Perancangan Klasifikasi Tanaman Herbal Menggunakan Transfer Learning Pada Algoritma Convolutional Neural Network (CNN),” J. Ilm. Infokam, vol. 18, no. 2, pp. 105–118, 2022, doi: 10.53845/infokam.v18i2.328.

A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.

M. F. Atthaariq, “RANCANGAN MODEL BINARY CLASSIFICATION GAMBAR PRODUK ZIPPER DENGAN MOBILENETV2,” vol. 2, no. 10, pp. 1–6, 2024.

N. Yehia and A. Samy, “An Enhancement Technique to Diagnose Colon and Lung Cancer by using Double CLAHE and Deep Learning An Enhancement Technique to Diagnose Colon and Lung Cancer by using Double CLAHE and Deep Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 13, p. 2022, Aug. 2022.

F. A. A. Harahap, A. N. Nafisa, E. N. D. B. Purba, and N. A. Putri, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model Mobilenetv2 Dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary Dan Meningioma,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 5, no. 1, pp. 53–61, 2023, doi: 10.29303/jtika.v5i1.234.

M. Sandler, A. Howard, M. Zhu, and A. Zhmoginov, “Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf,” arXiv, pp. 4510–4520, 2018.

Published
2024-07-25
How to Cite
[1]
S. Arnandito and T. Sasongko, “Comparison of EfficientNetB7 and MobileNetV2 in Herbal Plant Species Classification Using Convolutional Neural Networks”, JAIC, vol. 8, no. 1, pp. 176-185, Jul. 2024.
Section
Articles