Comparison of EfficientNetB7 and MobileNetV2 in Herbal Plant Species Classification Using Convolutional Neural Networks
Abstract
This study compares the performance of EfficientNetB7 and MobileNetV2 in classifying herbal plant species using Convolutional Neural Networks (CNNs). The primary objective was to automatically identify herbal plant species with high accuracy. Based on the evaluation results, both EfficientNetB7 and MobileNetV2 achieved approximately 98% accuracy in recognizing herbal plant species. While both models demonstrated excellent performance in precision, recall, and F1-score for most plant species, EfficientNetB7 showed a slight edge in some evaluation metrics. These findings provide valuable insights into the potential implementation of CNN architectures in automatic plant recognition applications, particularly for developing widely applicable web-based systems for herbal plant identification.
Downloads
References
Grenvilco et al, “Vol. 16 No. 3 / Juli - September 2023,” Pemanfaat. Tanam. Herb. Sebagai Obat Tradis. Untuk Kesehat. Masy. Di Desa Guaan Kec. Mooat Kabupaten Bolaang Mongondow Timur, vol. 16, no. 3, pp. 1–20, 2023.
M. I. Rahayu, R. Jaenal, and M. H. Risyandi, “Identifikasi Tanaman Obat Herbal Berbasis Citra,” J. Teknol. Inf. dan Komunikas, vol. 12, no. 2, pp. 57–63, 2023, [Online]. Available: https://www.researchgate.net/publication/377158403
B. Setiyono et al., “Identifikasi Tanaman Obat Indonesia Melalui Citra Daun Menggunakan Metode Convolutional Neural Network (CNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 385–392, 2023, doi: 10.25126/jtiik.20231026809.
K. U. S. D. Reddy, A. Shaik, A. Balasundaram, M. S. Nithin, L. S. R. Kakarla, and S. Noor Mahammad, “Classification of Indian Medicinal Leaves using Transfer Learning based Convolutional Neural Networks,” in 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), 2022, pp. 1050–1058. doi: 10.1109/ICOSEC54921.2022.9952074.
S. A. E. ALBAKIA and R. A. Saputra, “Identifikasi Jenis Daun Tanaman Obat Menggunakan Metode Convolutional Neural Network (CNN) Dengan Model VGG16,” J. Inform. Polinema, vol. 9, no. 4, pp. 451–460, 2023, doi: 10.33795/jip.v9i4.1420.
A. M. Atha and E. Zuliarso, “Deteksi Tanaman Herbal Khusus Untuk Penyakit Kulit Dan Penyakit Rambut Menggunakan Convolutional Neural Network (CNN) Dan Tensorflow,” J. JUPITER, vol. 4 (2), pp. 1–10, 2022.
R. Inggi, M. Mardin, M. Siregar, and A. Asmira, “Sistem Informasi Pemanfaatan Tanaman Herbal Untuk Pengobatan Berbasis Android,” Simkom, vol. 8, no. 1, pp. 39–54, 2023, doi: 10.51717/simkom.v8i1.101.
L. Listyalina, I. Buyung, A. Q. Munir, I. Mustiadi, and D. A. Dharmawan, “Conv-Tire: Tire Feasibility Assessment using Convolutional Neural Networks Conv-Tire: Asesmen Kelayakan Ban berbasis Convolutional Neural Network,” J. Inform. dan Teknol. Inf., vol. 19, no. 3, pp. 323–336, 2022, doi: 10.31515/telematika.v19i3.7697.
A. M. ATHA, “Dataset Tanaman Herbal,” www.kaggle.com. Accessed: May 02, 2024. [Online]. Available: https://www.kaggle.com/datasets/anefiamutiaraatha/dataset-tanaman-herbal/data
P. Purwanto and S. Sumardi, “Perancangan Klasifikasi Tanaman Herbal Menggunakan Transfer Learning Pada Algoritma Convolutional Neural Network (CNN),” J. Ilm. Infokam, vol. 18, no. 2, pp. 105–118, 2022, doi: 10.53845/infokam.v18i2.328.
A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.
M. F. Atthaariq, “RANCANGAN MODEL BINARY CLASSIFICATION GAMBAR PRODUK ZIPPER DENGAN MOBILENETV2,” vol. 2, no. 10, pp. 1–6, 2024.
N. Yehia and A. Samy, “An Enhancement Technique to Diagnose Colon and Lung Cancer by using Double CLAHE and Deep Learning An Enhancement Technique to Diagnose Colon and Lung Cancer by using Double CLAHE and Deep Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 13, p. 2022, Aug. 2022.
F. A. A. Harahap, A. N. Nafisa, E. N. D. B. Purba, and N. A. Putri, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model Mobilenetv2 Dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary Dan Meningioma,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 5, no. 1, pp. 53–61, 2023, doi: 10.29303/jtika.v5i1.234.
M. Sandler, A. Howard, M. Zhu, and A. Zhmoginov, “Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf,” arXiv, pp. 4510–4520, 2018.
Copyright (c) 2024 Seno Arnandito, Theopilus Bayu Sasongko
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).