Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir
Abstract
Indonesia is part of a tropical climate with high rainfall intensity. High rainfall intensity can potentially cause flooding. To minimize this, accurate weather predictions are needed to be able to anticipate beforehand. This research was conducted with the aim of classifying based on the rain category with the dichotomy of heavy rain and very heavy rain using data mining techniques with the CRISP-DM methodology. The algorithm used in the classification technique is CART (Classification And Regression Tree) with Confusion Matrix test parameters. Based on the results of the model evaluation, it shows that the CART algorithm has a fairly good performance in classifying with an accuracy value of 89.4%.
Downloads
References
A. K. Neno, H. Harijanto, and A. Wahid., “Hubungan Debit Air dan Tinggi Muka Air di Sungai Lambagu Kecamatan Tawaeli Kota Palu,” War. Rimba, vol. 4, no. 2, pp. 1–8, 2016.
S. P. Nugroho, “Evaluasi dan analisis curah hujan sebagai faktor penyebab bencana banjir jakarta (in Bahasa),” J. Sains Teknol. Modif. Cuaca, vol. 3, no. 2, pp. 91–97, 2002.
B. K. Tjasyono, I. Juaeni, and W. B. Harijono, “Proses Meteorologis Bencana Banjir,” J. Mkg, vol. 8, no. 2, pp. 64–78, 2007.
А. Вульфин and А. Фрид, “Нейросетевая модель анализа технологических временных рядов в рамках методологии Data Mining,” Информационно-Управляющие Системы, no. 5, 2011.
B. P. T.P and R. D. Indah Sari, “Penerapan Data Mining Untuk Prakiraan Cuaca Di Kota Malang Menggunakan Algoritma Iterative Dichotomiser Tree (Id3),” Jouticla, vol. 2, no. 2, pp. 101–108, 2017, doi: 10.30736/jti.v2i2.68.
P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020.
S. Huber, H. Wiemer, D. Schneider, and S. Ihlenfeldt, “DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model,” Procedia CIRP, vol. 79, pp. 403–408, 2019, doi: 10.1016/j.procir.2019.02.106.
D. S. Informasi, Artificial Neural Malang Ann Method Implementation To Predict Rainfall in Case of Dengue Fever Anticipation in Malang District. 2018.
R. Prasetya, “Penerapan Teknik Data Mining Dengan Algoritma,” vol. 2, no. 2, 2020.
Sugiyono, “Dokumen Karya Ilmiah | Skripsi | Prodi Teknik Informatika - S1 | FIK | UDINUS | 2016,” Fik, vol. 1, no. 1, pp. 1–2, 2016.
J. Coding and S. K. Untan, “Kata Kunci: Kebakaran Hutan, Data Mining, K-Nearest Neighbor (KNN), Fire Weather Index(FWI). 1.,” vol. 06, no. 2, 2018.
J. Wijaya, “Implementasi algoritma pohon keputusan cart untuk menentukan klasifikasi data evaluasi mobil skripsi,” 2019.
Copyright (c) 2021 Msy Aulia Hasanah, Sopian Soim, Ade Silvia Handayani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).