Hybrid Rainfall Analysis in Semarang by Integrating SARIMA Predictions with Meteorological Association Rules

Authors

  • Kristina Agustin Universitas Dian Nuswantoro
  • Ika Novita Dewi Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30871/jaic.v10i1.12013

Keywords:

Apriori Algorithm, Association Rule Mining, Hydrometeorological Analysis, Rainfall Forecasting, SARIMA

Abstract

Climate variability necessitates advanced analytical approaches to understand irregular rainfall patterns, particularly in coastal cities like Semarang, Central Java. This research employs a dual-analysis framework combining the Seasonal Autoregressive Integrated Moving Average (SARIMA) model and the Apriori algorithm to forecast rainfall and uncover hidden meteorological associations. Analyzing BMKG monthly climatological data from January 2020 to December 2024, the research addresses both temporal trends and variable dependencies. The SARIMA 〖(1,0,0)(2,1,0)〗_12 model projected rainfall dynamics for 2025, identifying critical wet periods (January-March, November-December) and dry intervals (July-September), achieving a MAPE of 44.97%. To complement temporal forecasting, the Apriori algorithm was applied with 50% minimum support and 50% confidence, generating association rules from daily discretized meteorological data. Results reveal that the combination of low temperature (Tx_Low, Tn_Low) and moderate wind speed (FFx_Medium) exhibits the strongest correlation with heavy rainfall events Lift Ratio 12.34, indicating a 12-fold increased risk compared to random conditions. By synergizing temporal forecasting with the identification of meteorological triggers, this research offers a robust basis for early warning systems, supporting flood mitigation and water resource management strategies in Semarang.

Downloads

Download data is not yet available.

References

[1] F. Lubis and I. J. A. Saragih, “Performance of probabilistic forecast of the onset of the rainy season over Java Island based on the application of Constructed Analogue (CA) method on Climate Forecast System Version 2 (CFSV2) model output,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Nov. 2021. doi: 10.1088/1755-1315/893/1/012037.

[2] G. Ayu Windari et al., “Mekanisme Terjadinya Hujan dan Pengaruhnya Terhadap Lingkungan,” Jurnal Teknologi Lingkungan UNMUL, vol. 8, no. 2, 2024.

[3] M. Yustiana, M. Zainuri, D. N. Sugianto, M. P. N. Batubara, and A. M. Hidayat, “Dampak Variabilitas Iklim Inter-Annual (El Niño, La Niña) Terhadap Curah Hujan dan Anomali Tinggi Muka Laut di Pantai Utara Jawa Tengah,” Buletin Oseanografi Marina, vol. 12, no. 1, pp. 109–124, Feb. 2023, doi: 10.14710/buloma.v12i1.48377.

[4] P. K. Pothapakula, C. Primo, S. Sørland, and B. Ahrens, “The Synergistic Impact of ENSO and IOD on Indian Summer Monsoon Rainfall in Observations and Climate Simulations-an Information Theory Perspective,” Earth System Dynamics, vol. 11, no. 4, pp. 903–923, Nov. 2020, doi: 10.5194/esd-11-903-2020.

[5] E. Hermawan et al., “Large-Scale Meteorological Drivers of Extreme Precipitation Event and Devastating Floods of Early February 2021 in Semarang, Indonesia,” 2022. [Online]. Available: https://sharaku.eorc.jaxa.jp/GSMaP/

[6] F. Wang, M. Li, Y. Mei, and W. Li, “Time Series Data Mining: A Case Study with Big Data Analytics Approach,” IEEE Access, vol. 8, pp. 14322–14328, 2020, doi: 10.1109/ACCESS.2020.2966553.

[7] H. Mohammed and A.-M. Al-Sharif, “Libyan Journal of Medical and Applied Sciences LJMAS Analysis and Evaluation of ARIMA and SARIMA Models Performance in Time Series Forecasting: An Applied Study,” 2025.

[8] L. Zeng, Q. Chen, and M. Huang, “RSFD: A Rough Set-Based Feature Discretization Method For Meteorological Data,” Front Environ Sci, vol. 10, Sep. 2022, doi: 10.3389/fenvs.2022.1013811.

[9] M. H. Santoso, “Application of Association Rule Method Using Apriori Algorithm to Find Sales Patterns Case Study of Indomaret Tanjung Anom,” Brilliance: Research of Artificial Intelligence, vol. 1, no. 2, pp. 54–66, Dec. 2021, doi: 10.47709/brilliance.v1i2.1228.

[10] H. Chen, M. Yang, and X. Tang, “Association Rule Mining of Aircraft Event Causes Based on The Apriori Algorithm,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-64360-6.

[11] I. Ramli, S. Rusdiana, A. Achmad, Azizah, and M. E. Yolanda, “Forecasting of Rainfall Using Seasonal Autoregreressive Integrated Moving Average (SARIMA) Aceh, Indonesia,” Mathematical Modelling of Engineering Problems, vol. 10, no. 2, pp. 501–508, Apr. 2023, doi: 10.18280/mmep.100216.

[12] S. O. Adams and M. Ardo Bamanga, “Modelling and Forecasting Seasonal Behavior of Rainfall in Abuja, Nigeria; A SARIMA Approach,” American Journal of Mathematics and Statistics, vol. 2020, no. 1, pp. 10–19, 2020, doi: 10.5923/j.ajms.20201001.02.

[13] P. Kabbilawsh, D. S. Kumar, and N. R. Chithra, “Forecasting long-term monthly precipitation using SARIMA models,” Journal of Earth System Science, vol. 131, no. 3, Sep. 2022, doi: 10.1007/s12040-022-01927-9.

[14] Gunawan, W. Andriani, and F. Z. Hidayatullah, “Penerapan Metode Association Rule Dan Algoritma Apriori Untuk Analisis Pola Frekuensi Tinggi Prediksi Curah Hujan Di Kota Tegal,” Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 11, no. 2, pp. 45–53, Oct. 2023, doi: 10.21063/jtif.2023.v11.2.45-53.

[15] L. Coulibaly, B. Kamsu-Foguem, and F. Tangara, “Explainability with Association Rule Learning for Weather Forecast,” SN Comput Sci, vol. 2, no. 2, Apr. 2021, doi: 10.1007/s42979-021-00525-8.

[16] D. Mircetic, S. Nikolicic, M. Maslaric, N. Ralevic, and B. Debelic, “Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain,” Open Engineering, vol. 6, no. 1, pp. 407–411, 2016, doi: 10.1515/eng-2016-0056.

[17] G. Christie, D. Hatidja, and R. Tumilaar, “Penerapan Metode SARIMA dalam Model Intervensi Fungsi Step untuk Memprediksi Jumlah Pegunjung Objek Wisata Londa (Application of the SARIMA Method in the Step Function Intervention to Predict the Number of Visitors at Londa Tourism Object),” JURNAL ILMIAH SAINS, vol. 22, no. 2, p. 96, Aug. 2022, doi: 10.35799/jis.v22i2.40961.

[18] A. S. AlSalehy and M. Bailey, “Improving Time Series Data Quality: Identifying Outliers and Handling Missing Values in a Multilocation Gas and Weather Dataset,” Smart Cities, vol. 8, no. 3, Jun. 2025, doi: 10.3390/smartcities8030082.

[19] T. M. Wanjuki, A. Wagala, and D. K. Muriithi, “Evaluating the Predictive Ability of Seasonal Autoregressive Integrated Moving Average (SARIMA) Models using Food and Beverages Price Index in Kenya,” European Journal of Mathematics and Statistics, vol. 3, no. 2, pp. 28–38, Apr. 2022, doi: 10.24018/ejmath.2022.3.2.100.

[20] M. Faizan Tahir, K. Mehmood, M. Aamir, A. Wali Khan University Mardan, and P. Rizwan Raheem Ahmed, “The comparative Analysis of SARIMA, Facebook Prophet, and LSTM for Road Traffic Injury prediction in Northeast China.”

[21] C. Maulana and N. Hajarisman, “Penerapan Transformasi Box Cox untuk Mengatasi Masalah Ketidakstasioneran dan Pola Periodik dalam Data Deret Waktu pada Ekspor Bidang Pertanian di Indonesia,” Bandung Conference Series: Statistics, vol. 3, no. 2, pp. 763–772, Aug. 2023, doi: 10.29313/bcss.v3i2.9371.

[22] M. Othman, R. Indawati, A. A. Suleiman, M. B. Qomaruddin, and R. Sokkalingam, “Model Forecasting Development for Dengue Fever Incidence in Surabaya City Using Time Series Analysis,” Processes, vol. 10, no. 11, Nov. 2022, doi: 10.3390/pr10112454.

[23] I. Mahib Zuhair Riyanto et al., “Forecasting the Number of Passengers for the Jakarta-Bandung High-Speed Rail using SARIMA and SSA Models,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[24] L. Martínez-Acosta, J. P. Medrano-Barboza, Á. López-Ramos, J. F. R. López, and Á. A. López-Lambraño, “SARIMA Approach to Generating Synthetic Monthly Rainfall in The Sinú River Watershed in Colombia,” Atmosphere (Basel), vol. 11, no. 6, Jun. 2020, doi: 10.3390/atmos11060602.

[25] N. S. Poli and A. S. Sikder, “Predictive Analysis of Sales Using the Apriori Algorithm: A Comprehensive Study on Sales Forecasting and Business Strategies in the Retail Industry.,” International Journal of Imminent Science & Technology., vol. 1, no. 1, pp. 1–16, Nov. 2023, doi: 10.70774/ijist.v1i1.1.

[26] Y. Kaya and R. Tekin, “Comparison of Discretization methods for Classifier Decision Trees and Decision Rules on Medical Data Sets,” European Journal of Science and Technology, Mar. 2022, doi: 10.31590/ejosat.1080098.

[27] E. L. Limahelu and B. Herwanto, “Buletin Stasiun Meteorologi Umbu Mehang Kunda Sumba Timur,” Jun. 2020.

Downloads

Published

2026-02-04

How to Cite

[1]
K. Agustin and I. Novita Dewi, “Hybrid Rainfall Analysis in Semarang by Integrating SARIMA Predictions with Meteorological Association Rules”, JAIC, vol. 10, no. 1, pp. 388–397, Feb. 2026.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.