Implementation of Apriori Algorithm for Determining Spare Parts Product Recommendation Packages

  • Yumaris Alfi Alhillah Universitas Bhayangkara Jakarta Raya
  • Wowon Priatna Universitas Bhayangkara Jakarta Raya
  • Aida Fitriyani Universitas Bhayangkara Jakarta Raya
Keywords: Spare Parts Product, Apriori Algorithm, Crisp-DM, Association Rules

Abstract

The aim of this research is to determine recommended product packages for spare parts from an automotive parts supplier. Shop owners have faced challenges in meeting customer demands over the past few months, experiencing frequent stockouts of spare parts due to a manual transaction recording system and a manual checking system for spare parts storage. This inefficiency and lack of accuracy in managing in-demand spare parts prompted the application of the apriori algorithm, a data mining method. Data was collected from the total sales over the past three months, subsequently cleaned and transformed for manual and Python-based apriori calculations. The results, obtained through both manual and Python implementations of apriori, indicate that the two frequently occurring item sets are oil filters with a confidence value of 68% and air filters with a confidence value of 63%. Based on these findings, the study recommends spare parts stores to maintain higher stock levels of oil filters and air filters compared to other spare parts.

Downloads

Download data is not yet available.

References

G. A. Pradnyana Dan K. Agustini, Konsep Dasar Data Mining, Vol. 1. 2022.

Z. Abidin, A. Kharisma Amartya, Dan A. Nurdin, “Penerapan Algoritma Apriori Pada Penjualan Suku Cadang Kendaraan Roda Dua (Studi Kasus: Toko Prima Motor Sidomulyo),” Jurnal Teknoinfo, Vol. 16, No. 2, Hlm. 225–232, 2022.

P. Haryandi, Y. Widiastiwi, Dan N. Chamidah, “Penerapan Algoritma Apriori Untuk Mencari Pola Penjualan Produk Herbal (Studi Kasus: Toko Hanawan Gemilang),” Jurnal Informatik, Vol. 17, No. 3, Hlm. 218–225, 2021.

S. A. FADHILAH, “Analisis Perilaku Pembelian Konsumen Menggunakan Metode Association Rule-Market Basket Analysis Dan Clustering Analysis (Studi Kasus: Jore Coffee & Eatery),” 2022, Accessed: Nov. 29, 2023. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/42734

Y. Rokhayati, U. H. B. Rusdi, D. E. Kurniawan, N. Z. Janah, and S. Irawan, “Analysis of SP Students Using AHP-Apriori Combination,” in Proceedings of the International Conference On Applied Science and Technology 2019 - Social Sciences Track (iCASTSS 2019), Nusa Dua, Indonesia: Atlantis Press, 2019. doi: 10.2991/icastss-19.2019.40.

A. M. B. Butar, “Penerapan Algoritma Apriori Pada Pengolahan Data Mining Untuk Mengetahui Pola Pembelian Konsumen Pd. Lucky Metal Part,” PhD Thesis, KODEUNIVERSITAS041060# UniversitasBuddhiDharma, 2022. Accessed: Nov. 29, 2023. [Online]. Available: http://repositori.buddhidharma.ac.id/id/eprint/1484

D. E. Kurniawan and A. Fatulloh, “Clustering of Social Conditions in Batam, Indonesia Using K-Means Algorithm and Geographic Information System,” 2017

S. Rahmayuni, “Penerapan Algoritma Apriori Pada Data Perceraian Untuk Mengetahui Faktor-Faktor”, Accessed: Nov. 29, 2023. [Online]. Available: https://www.academia.edu/download/89896260/300878716.pdf

A. Renalda, A. Susilo, Y. Irawan, Dan A. Suharso, “Analisi Data Transaksi Penjualan Menggunakan Algoritma Apriori Untuk Menentukan Paket Promosi Refarasi Mobil,” Jurnal Sains Komputer & Informatika (J-Sakti), Vol. 5, No. 2, Hlm. 925–934, 2021.

A. Hamdani Dan C. Rozikin, “Analisis Data Transaksi Penjualan Menggunakan Algoritma Apriori Untuk Menentukan Paket Variasi Mobil (Studi Kasus: Bengkel Mobil Victory),” Jurnal Pendidikan Dan Konseling, Vol. 4, No. 4, Hlm. 4865–4871, 2022.

N. Devita Sari Dan S. Khoiriah, “Penerapan Metode Asosiasi Pada Toko Afifa Dengan Algoritma Apriori,” Teknologi Informasi & Komputer, Vol. 1, No. 1, Hlm. 8–17, 2022.

D. A. Istiqomah, Y. Astuti, Dan S. Nurjanah, “Implementasi Algoritma Fp-Growth Dan Apriori Untuk Persediaan Produk,” Jip (Jurnal Informatika Polinema), Vol. 8, No. 2, Hlm. 37–42, 2022.

Styawati Dan K. N. Anjumi, “Analisis Pola Transaksi Pelanggan menggunakan Algoritme apriori,” Jurnal Sains Komputer & Informatika (J-Sakti) , Vol. 5, No. 2, Hlm. 619–626, 2021.

F. Mahmuda, M. A. R. Sitorus, H. Widyastuti, and D. E. Kurniawan, “Clustering Profil Pengunjung Perpustakaan Menggunakan Algoritma K-Means,” Journal of Applied Informatics and Computing, vol. 1, no. 1, Art. no. 1, 2017, doi: 10.30871/jaic.v1i1.476.

T. Evendi Dan R. F. A. Aziza, “Penerapan Algoritma Apriori Untuk Menemukan Hubungan Antara Jenis Komoditas Import Dengan Jumlah Permintaanbulanan,” Jurnal Teknokompak, Vol. 13, No. 1, Hlm. 18–23, 2019.

Published
2023-11-30
How to Cite
[1]
Y. Alhillah, W. Priatna, and A. Fitriyani, “Implementation of Apriori Algorithm for Determining Spare Parts Product Recommendation Packages”, JAIC, vol. 7, no. 2, pp. 212-217, Nov. 2023.
Section
Articles