Association Rule Mining for Truck Body Damage Pattern Analysis Using Apriori and CRISP-DM

Authors

  • Livanty Efatania Dendy Universitas Ciputra Surabaya
  • Rinabi Tanamal Universitas Ciputra Surabaya

DOI:

https://doi.org/10.30871/jaic.v10i1.12134

Keywords:

Association Rule Mining, Apriori Algorithm, CRISP-DM, Truck Body Damage, Preventive Maintenance

Abstract

This study investigates damage patterns in truck body components by applying the Apriori association rule mining algorithm within the CRISP-DM framework. The analysis is based on 281 historical repair records from CV Lestari’s fleet throughout 2024. The dataset encompasses 14 attributes, including vehicle types, route categories, body materials, and load conditions. To ensure the robustness of the generated rules, parameter tuning was conducted using a grid search approach, resulting in minimum support and confidence thresholds of 15% and 60%, respectively. A total of 50 association rules were derived, with several rules demonstrating high confidence values and lift values above 1.1, indicating meaningful and non-random correlations. Notably, structural frame damage is strongly associated with mountainous routes and heavy loads, while door and hinge damage tends to occur in aluminum box-bodied trucks operating under medium loads. These patterns were aligned with practical insights from field technicians and further contextualized through technical recommendations, such as reinforcing high-stress points and adjusting inspection schedules for high-risk configurations. The findings support the formulation of predictive maintenance strategies, enabling companies to transition from reactive repairs to proactive, data-driven decision-making. By integrating rule-based insights into maintenance planning, the study contributes to reducing unexpected failures, optimizing inspection frequency, and enhancing overall fleet reliability.

Downloads

Download data is not yet available.

References

[1] Badan Pusat Statistik, “Distribusi PDB Menurut Lapangan Usaha Seri 2010 Atas Dasar Harga Berlaku (Persen),” Badan Pusat Statistik. Accessed: Nov. 10, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTA2IzI=/-seri-2010--distribusi-pdb-menurut-lapangan-usaha-seri-2010-atas-dasar-harga-berlaku--persen-.html

[2] F. Syifa et al., “Peran E-Commerce Dalam Transformasi Ekspor Impor Di Era Digital,” Sinergi Jurnal Riset Ilmiah, vol. 1, no. 12, pp. 1332–1340, Dec. 2024, doi: 10.62335.

[3] Badan Pusat Statistik, “Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis (Unit), 2024,” Bada Pusat Statistik. Accessed: Dec. 17, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NTcjMg==/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis--unit-.html

[4] A. Budiharjo, P. Buana STJ, Pratikso, R. Mudiyono, and R. Y. Anindita, “The Analysis of Freight Transport in Indonesia: Trailer and Semi-Trailer,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 3, pp. 930–939, Jun. 2025, doi: 10.18517/ijaseit.15.3.20319.

[5] O. Slavinska, A. Bubela, O. Razboinikov, O. Davydenko, O. Ivanushko, and I. Kozarchuk, “Assessment of the Dynamic Impact of a Truck on the Bridge Pavement Based on the Proposed Mathematical Model of Vehicle Movement,” Nanotechnol. Percept., vol. 20, no. S1, Mar. 2024, doi: 10.62441/nano-ntp.v20iS1.20.

[6] M. Lin, C. Hu, S. M. Easa, and Z. Jiang, “A New Approach to Predict Dynamic Loads Considering Highway Alignment Using Data Mining Techniques,” Applied Sciences, vol. 12, no. 11, p. 5719, Jun. 2022, doi: 10.3390/app12115719.

[7] A. K. Ary, A. R. Prabowo, and F. Imaduddin, “Structural Assessment of Alternative Urban Vehicle Chassis Subjected to Loading and Internal Parameters Using Finite Element Analysis,” 2020.

[8] F. Lisowski and E. Lisowski, “Testing and Fatigue Life Assessment of Timber Truck Stanchions,” Applied Sciences, vol. 10, no. 17, p. 6134, Sep. 2020, doi: 10.3390/app10176134.

[9] R. Tanamal and J. Mourent, “Rancang Bangun Aplikasi Point Of Sales Berbasis Website Pada Toko Ramai Rambipuji,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 12, no. 3, Sep. 2025, doi: 10.35957/jatisi.v12i3.11903.

[10] B. H. Situmorang, A. Isra, D. Paragya, and D. A. A. Adhieputra, “Apriori Algorithm Application for Consumer Purchase Patterns Analysis,” Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, vol. 21, no. 1, pp. 15–20, Jan. 2024, doi: 10.33751/komputasi.v21i1.9260.

[11] S. Supriadi, G. Gunawan, RG. G. Alam, and D. Abdullah, “Implementation Of Apriori Data Mining Algorithm To Increase Sales Of Caringin Shop,” Jurnal Komputer, Informasi dan Teknologi, vol. 4, no. 1, p. 14, Aug. 2024, doi: 10.53697/jkomitek.v4i1.1799.

[12] I. Mohamad, R. Kasemsri, V. Ratanavaraha, and S. Jomnonkwao, “Application of the Apriori Algorithm for Traffic Crash Analysis in Thailand,” Safety, vol. 9, no. 3, p. 58, Aug. 2023, doi: 10.3390/safety9030058.

[13] D. Dwiputra, A. Mulyo Widodo, H. Akbar, and G. Firmansyah, “Evaluating the Performance of Association Rules in Apriori and FP-Growth Algorithms: Market Basket Analysis to Discover Rules of Item Combinations,” Journal of World Science, vol. 2, no. 8, pp. 1229–1248, Aug. 2023, doi: 10.58344/jws.v2i8.403.

[14] S. Marselina, J. H. Jaman, and D. E. Kurniawan, “Sales Analysis Using Apriori Algorithm in Data Mining Application on Food and Beverage (F&B) Transactions,” Journal of Applied Informatics and Computing, vol. 7, no. 2, pp. 218–223, Nov. 2023, doi: 10.30871/jaic.v7i2.5026.

[15] I. A. Ashari, A. Wirasto, D. Nugroho Triwibowo, and P. Purwono, “Implementasi Market Basket Analysis dengan Algoritma Apriori untuk Analisis Pendapatan Usaha Retail,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 3, pp. 701–709, Jul. 2022, doi: 10.30812/matrik.v21i3.1439.

[16] A. Ivana and I. Maryati, “Implementation of Apriori Algorithm in Identifying Purchase Relationships at Bluder Cokro Pakuwon Mall,” Journal of Applied Informatics and Computing, vol. 9, no. 2, pp. 556–563, Apr. 2025, doi: 10.30871/jaic.v9i2.9154.

[17] Y. A. Alhillah, W. Priatna, and A. Fitriyani, “Implementation of Apriori Algorithm for Determining Spare Parts Product Recommendation Packages,” Journal of Applied Informatics and Computing, vol. 7, no. 2, pp. 212–217, Nov. 2023, doi: 10.30871/jaic.v7i2.5589.

[18] J. Hong, R. Tamakloe, and D. Park, “Discovering Insightful Rules among Truck Crash Characteristics using Apriori Algorithm,” J. Adv. Transp., vol. 2020, pp. 1–16, Jan. 2020, doi: 10.1155/2020/4323816.

[19] S. D. Patil, A. Mitra, K. Tuggali Katarikonda, and J.-D. Wansink, “Predictive asset availability optimization for underground trucks and loaders in the mining industry,” OPSEARCH, vol. 58, no. 3, pp. 751–772, Sep. 2021, doi: 10.1007/s12597-020-00502-4.

[20] C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput. Sci., vol. 181, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.

[21] R. Wirth and J. Hipp, “CRISP-DM: Towards a Standard Process Model for Data Mining,” in Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, London, UK, 2000, pp. 29–39.

[22] P. Chapman et al., “CRISP-DM 1.0 Step-by-step data mining guide,” DaimlerChrysler, Munich, Germany, 1999. Accessed: Dec. 21, 2025. [Online]. Available: https://www.kde.cs.uni-kassel.de/wp-content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf

[23] S. Mohammed et al., “The effects of data quality on machine learning performance on tabular data,” Inf. Syst., vol. 132, p. 102549, Jul. 2025, doi: 10.1016/j.is.2025.102549.

[24] J. A. Diaz-Garcia, M. D. Ruiz, and M. J. Martin-Bautista, “A survey on the use of association rules mining techniques in textual social media,” Artif. Intell. Rev., vol. 56, no. 2, pp. 1175–1200, Feb. 2023, doi: 10.1007/s10462-022-10196-3.

[25] E. Oropallo, P. Piscopo, P. Centobelli, R. Cerchione, E. Nuevo, and A. Rodríguez-Prieto, “A decision support system to assess the operational safety and economic benefits of risk-based inspection implementation strategies,” Saf. Sci., vol. 177, p. 106570, Sep. 2024, doi: 10.1016/j.ssci.2024.106570.

Downloads

Published

2026-02-04

How to Cite

[1]
L. E. Dendy and R. Tanamal, “Association Rule Mining for Truck Body Damage Pattern Analysis Using Apriori and CRISP-DM”, JAIC, vol. 10, no. 1, pp. 417–428, Feb. 2026.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.