Application of SARIMA, GRU, and Prophet for Capturing Seasonal Patterns in Consumer Price Inflation
DOI:
https://doi.org/10.30871/jaic.v10i1.11802Keywords:
CPI, GRU, Prophet, SARIMA, Seasonality, Sliding windowAbstract
Seasonal dynamics make inflation forecasting challenging in emerging economies where holiday effects, regulated prices, and supply shocks interact. This study models Indonesia’s monthly consumer price inflation (CPI) using official data from Statistics Indonesia (May 2006–April 2025) and evaluates three forecasting paradigms: a classical seasonal baseline (SARIMA), a decomposable model with trend–seasonality components (Prophet), and a neural sequence learner (GRU). A 10-fold sliding window design is employed to preserve temporal order. Performance is assessed with RMSE, MAE, and MASE, summarized across folds with boxplots and statistical descriptives (means, standard deviations, and 95% confidence intervals). Across folds and metrics, Prophet consistently achieves the lowest error and the tightest dispersion, GRU ranks second with competitive accuracy and stable variance, and SARIMA remains a transparent yet weaker benchmark. MASE values below one for Prophet (and generally for GRU) indicate improvements over a naïve baseline. Practically, Prophet’s decompositions support policy communication by linking forecast movements to interpretable components (e.g., Ramadan/Eid and year-end effects), while GRU is useful during more nonlinear or volatile periods; SARIMA remains valuable for diagnostics in stable regimes.
Downloads
References
[1] J. Banaś and K. Utnik-Banaś, “Evaluating a seasonal autoregressive moving average model with an exogenous variable for short-term timber price forecasting,” For. Policy Econ., vol. 131, p. 102564, Oct. 2021, doi: 10.1016/J.FORPOL.2021.102564.
[2] M. G. S. Kenyi and K. Yamamoto, “A hybrid SARIMA-Prophet model for predicting historical streamflow time-series of the Sobat River in South Sudan,” Discov. Appl. Sci., vol. 6, no. 9, pp. 1–20, Sep. 2024, doi: 10.1007/S42452-024-06083-X/TABLES/5.
[3] Y. Ensafi, S. H. Amin, G. Zhang, and B. Shah, “Time-series forecasting of seasonal items sales using machine learning – A comparative analysis,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 1, p. 100058, Apr. 2022, doi: 10.1016/J.JJIMEI.2022.100058.
[4] K. Bandara, R. J. Hyndman, and C. Bergmeir, “MSTL: a seasonal-trend decomposition algorithm for time series with multiple seasonal patterns,” Int. J. Oper. Res., vol. 52, no. 1, pp. 79–98, 2025, doi: 10.1504/IJOR.2025.143957.
[5] A. Ampountolas, “Addressing complex seasonal patterns in hotel forecasting: a comparative study,” J. Revenue Pricing Manag., vol. 24, no. 2, pp. 143–152, Apr. 2025, doi: 10.1057/S41272-024-00494-6.
[6] L. Guo, W. Fang, Q. Zhao, and X. Wang, “The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality,” Comput. Ind. Eng., vol. 161, p. 107598, Nov. 2021, doi: 10.1016/J.CIE.2021.107598.
[7] H. Abbasimehr, A. Behboodi, and A. Bahrini, “A novel hybrid model to forecast seasonal and chaotic time series,” Expert Syst. Appl., vol. 239, p. 122461, Apr. 2024, doi: 10.1016/J.ESWA.2023.122461.
[8] X. Gao, J. Zhou, Y. Ci, and L. Wu, “An improved Prophet emergency traffic-flow prediction model,” Proc. Inst. Civ. Eng. - Transp., vol. 178, no. 1, pp. 9–21, Feb. 2025, doi: 10.1680/JTRAN.23.00081.
[9] S. J. Taylor and B. Letham, “Forecasting at Scale,” Am. Stat., vol. 72, no. 1, pp. 37–45, Jan. 2018, doi: 10.1080/00031305.2017.1380080.
[10] D. M. PRATIWI, “Perbandingan metode SARIMA, holt winter’s exponential smoothing, dan prophet pada peramalan data inflasi di Indonesia,” Universitas Telkom, S1 Sains Data - Kampus Purwokerto, Purwokerto, 2025.
[11] T. T. Nguyen, H. G. Nguyen, J. Y. Lee, Y. L. Wang, and C. S. Tsai, “The consumer price index prediction using machine learning approaches: Evidence from the United States,” Heliyon, vol. 9, no. 10, p. e20730, Oct. 2023, doi: 10.1016/J.HELIYON.2023.E20730.
[12] R. Devi, A. Agrawal, J. Dhar, and A. K. Misra, “Forecasting of Indian tourism industry using modeling approach,” MethodsX, vol. 12, p. 102723, Jun. 2024, doi: 10.1016/J.MEX.2024.102723.
[13] A. L. M. Serrano et al., “Statistical comparison of time series models for forecasting brazilian monthly energy demand using economic, industrial, and climatic exogenous variables,” Appl. Sci. 2024, Vol. 14, Page 5846, vol. 14, no. 13, p. 5846, Jul. 2024, doi: 10.3390/APP14135846.
[14] P. T. Yamak, L. Yujian, and P. K. Gadosey, “A comparison between ARIMA, LSTM, and GRU for time series forecasting,” ACM Int. Conf. Proceeding Ser., pp. 49–55, Dec. 2019, doi: 10.1145/3377713.3377722.
[15] K. E. ArunKumar, D. V. Kalaga, C. Mohan Sai Kumar, M. Kawaji, and T. M. Brenza, “Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends,” Alexandria Eng. J., vol. 61, no. 10, pp. 7585–7603, 2022, doi: 10.1016/j.aej.2022.01.011.
[16] H. Balti, A. Ben Abbes, and I. R. Farah, “A Bi-GRU-based encoder–decoder framework for multivariate time series forecasting,” Soft Comput., vol. 28, no. 9–10, pp. 6775–6786, May 2024, doi: 10.1007/S00500-023-09531-9/METRICS.
[17] A. Yunita et al., “Performance analysis of neural network architectures for time series forecasting: A comparative study of RNN, LSTM, GRU, and hybrid models,” MethodsX, vol. 15, p. 103462, Dec. 2025, doi: 10.1016/J.MEX.2025.103462.
[18] Y. Zhang, R. Wu, S. M. Dascalu, and F. C. Harris, “A novel extreme adaptive GRU for multivariate time series forecasting,” Sci. Rep., vol. 14, no. 1, pp. 1–10, Dec. 2024, doi: 10.1038/S41598-024-53460-Y;SUBJMETA.
[19] P. Deka, M. Cordeiro-Costas, R. Pérez-Orozco, M. Chabiński, and A. Szlęk, “Novel NSGA-II optimized LSTM and GRU models for short-term forecasting of residential heating load,” Energy Build., vol. 344, p. 115999, Oct. 2025, doi: 10.1016/J.ENBUILD.2025.115999.
[20] J. Vitale and J. Robinson, “In-Season Price Forecasting in Cotton Futures Markets Using ARIMA, Neural Network, and LSTM Machine Learning Models,” J. Risk Financ. Manag. 2025, Vol. 18, Page 93, vol. 18, no. 2, p. 93, Feb. 2025, doi: 10.3390/JRFM18020093.
[21] M. Vilenko, “BiHRNN -- Bi-Directional Hierarchical Recurrent Neural Network for Inflation Forecasting,” Feb. 2025, Accessed: Oct. 29, 2025. [Online]. Available: https://arxiv.org/pdf/2503.01893.
[22] L. N. A. Mualifah, A. M. Soleh, and K. A. Notodiputro, “Comparison of GARCH, LSTM, and Hybrid GARCH-LSTM Models for Analyzing Data Volatility,” Int. J. Adv. Soft Comput. its Appl., vol. 16, no. 2, pp. 150–165, 2024, doi: 10.15849/IJASCA.240730.10.
[23] A. HASSAN, M. M. ALAM, and A. FAEIQUE, “Forecasting Monthly Inflation in Bangladesh: A Seasonal Autoregressive Moving Average (SARIMA) Approach,” J. Econ. Financ. Anal., vol. 7, no. 2, pp. 25–43, 2023, doi: 10.1991/JEFA.V7I2.A61.
[24] G. Alomani, M. Kayid, and M. F. Abd El-Aal, “Global inflation forecasting and Uncertainty Assessment: Comparing ARIMA with advanced machine learning,” J. Radiat. Res. Appl. Sci., vol. 18, no. 2, p. 101402, Jun. 2025, doi: 10.1016/J.JRRAS.2025.101402.
[25] T. T. Nguyen, H. G. Nguyen, J. Y. Lee, Y. L. Wang, and C. S. Tsai, “The consumer price index prediction using machine learning approaches: Evidence from the United States,” Heliyon, vol. 9, no. 10, p. e20730, Oct. 2023, doi: 10.1016/J.HELIYON.2023.E20730.
[26] R. Peirano, W. Kristjanpoller, and M. Minutolo, “Forecasting Inflation in Latin American Countries Using a SARIMA-LSTM Combination,” Jun. 2021, doi: 10.21203/RS.3.RS-607554/V1.
[27] O. Barkan, J. Benchimol, I. Caspi, E. Cohen, A. Hammer, and N. Koenigstein, “Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,” Int. J. Forecast., vol. 39, no. 3, pp. 1145–1162, Jul. 2023, doi: 10.1016/J.IJFORECAST.2022.04.009.
[28] W. W. S. Wei, “Time Series Analysis Univariate and Multivariate Methods,” New introduction to Multiple Time Series Analysis. pp. 1–764, 2006.
[29] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis Forecasting and Control, 5th ed. Wiley, 2016.
[30] A. S. Azad et al., “Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study,” Sustain. 2022, Vol. 14, Page 1843, vol. 14, no. 3, p. 1843, Feb. 2022, doi: 10.3390/SU14031843.
[31] Y. M. Maiga, “Empirical Approach to Modelling and Forecasting Inflation using ARIMA Model: Evidence from Tanzania,” J. Agric. Stud., vol. 12, no. 2, p. 58, Apr. 2024, doi: 10.5296/JAS.V12I2.21695.
[32] K. A. Notodiputro, Y. Angraini, and L. N. A. Mualifah, Analisis Data Deret Waktu dengan Python Pendekatan Box-Jenkins dan Machine Learning. Bogor: IPB Press, 2025.
[33] A. Ahmadpour, S. H. Mirhashemi, and M. Panahi, “Comparative evaluation of classical and SARIMA-BL time series hybrid models in predicting monthly qualitative parameters of Maroon river,” Appl. Water Sci., vol. 13, no. 3, pp. 1–10, Mar. 2023, doi: 10.1007/S13201-023-01876-8/TABLES/7.
[34] L. N. A. Mualifah et al., “PERBANDINGAN PERFORMA MODEL ARIMA-GARCH DAN LSTM DALAM MERAMALKAN JUMLAH KUNJUNGAN WISATAWAN DANAU KASTOBA,” J. Gaussian, vol. 14, no. 2, pp. 314–324, Sep. 2025, doi: 10.14710/J.GAUSS.14.2.314-324.
[35] L. N. A. Mualifah et al., “Forecasting the Number of Passengers for the Jakarta-Bandung High-Speed Rail using SARIMA and SSA Models,” J. Appl. Informatics Comput., vol. 9, no. 5, pp. 2443–2449, Oct. 2025, doi: 10.30871/JAIC.V9I5.10720.
[36] Rob J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 2nd ed. 2018.
[37] M. Slimane, N. Bedioui, and M. Besbes, “Assessing integration orders for SARIMA modeling A hypothesis testing approach with information criterion hyperparameter selection, case of predicting gas consumption in central Tunisia,” Energy Strateg. Rev., vol. 61, p. 101866, Sep. 2025, doi: 10.1016/J.ESR.2025.101866.
[38] N. A. Fazrina, D. R. Wijaya, B. A. Hadie, and S. D. Budiwati, “Poverty Level Prediction Based on Time Series Data using Auto Arima,” BIO Web Conf., vol. 144, p. 04008, Nov. 2024, doi: 10.1051/BIOCONF/202414404008.
[39] K. E. ArunKumar, D. V. Kalaga, C. Mohan Sai Kumar, M. Kawaji, and T. M. Brenza, “Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends,” Alexandria Eng. J., vol. 61, no. 10, p. 7585, Oct. 2022, doi: 10.1016/J.AEJ.2022.01.011.
[40] H. Balti, A. Ben Abbes, and I. R. Farah, “A Bi-GRU-based encoder–decoder framework for multivariate time series forecasting,” Soft Comput., vol. 28, no. 9–10, pp. 6775–6786, May 2024, doi: 10.1007/S00500-023-09531-9/METRICS.
[41] P. Deka, M. Cordeiro-Costas, R. Pérez-Orozco, M. Chabiński, and A. Szlęk, “Novel NSGA-II optimized LSTM and GRU models for short-term forecasting of residential heating load,” Energy Build., vol. 344, p. 115999, Oct. 2025, doi: 10.1016/J.ENBUILD.2025.115999.
[42] S. Giantsidi and C. Tarantola, “Deep learning for financial forecasting: A review of recent trends,” Int. Rev. Econ. Financ., vol. 104, p. 104719, Dec. 2025, doi: 10.1016/J.IREF.2025.104719.
[43] S. J. Taylor and B. Letham, “Forecasting at Scale,” Am. Stat., vol. 72, no. 1, pp. 37–45, Jan. 2018, doi: 10.1080/00031305.2017.1380080;SUBPAGE:STRING:ACCESS.
[44] X. Gao, J. Zhou, Y. Ci, and L. Wu, “An improved Prophet emergency traffic-flow prediction model,” Proc. Inst. Civ. Eng. - Transp., vol. 178, no. 1, pp. 9–21, Feb. 2025, doi: 10.1680/JTRAN.23.00081.
[45] X. Mei and P. K. Smith, “A Comparison of In-Sample and Out-of-Sample Model Selection Approaches for Artificial Neural Network (ANN) Daily Streamflow Simulation,” Water 2021, Vol. 13, Page 2525, vol. 13, no. 18, p. 2525, Sep. 2021, doi: 10.3390/W13182525.
[46] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 Competition: 100,000 time series and 61 forecasting methods,” Int. J. Forecast., vol. 36, no. 1, pp. 54–74, Jan. 2020, doi: 10.1016/J.IJFORECAST.2019.04.014.
[47] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” Int. J. Forecast., vol. 22, no. 4, pp. 679–688, Oct. 2006, doi: 10.1016/J.IJFORECAST.2006.03.001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Laily Nissa Atul Mualifah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








