Forecasting the Number of Passengers for the Jakarta-Bandung High-Speed Rail using SARIMA and SSA Models

Authors

  • Laily Nissa Atul Mualifah IPB University
  • Indra Mahib Zuhair Riyanto IPB University
  • Elke Frida Rahmawati IPB University
  • Muhammad Fahrezi Maulana IPB University
  • Keyzha Mutiara Ahdiat IPB University
  • Achmad Raihan Nurdin IPB University
  • Adelia Putri Pangestika IPB University

DOI:

https://doi.org/10.30871/jaic.v9i5.10720

Keywords:

High Speed Rail Jakarta- Bandung, SARIMA, Singular Spectrum Analysis

Abstract

Time series forecasting is essential for analyzing past data to predict future trends, supporting planning, and decision-making. The SARIMA model is widely used for seasonal data but may be less effective for highly fluctuating or non-stationary data, which can impact forecast accuracy. As an alternative, Singular Spectrum Analysis (SSA) offers a flexible approach, decomposing time series into trend, seasonal, and noise components without strict parametric assumptions, making it effective for complex data patterns. This study compares SARIMA and SSA models in forecasting daily passenger counts on the Jakarta-Bandung high-speed rail, using data from November 1, 2023, to September 30, 2024. The results show that the performance of SSA is more stable compared to SARIMA in the term of MAPE, where SSA provides lower MAPE then SARIMA in all three scenarios of data splits. These results are expected due to the non-linear pattern that appears in the data. Moreover, the predictions on both methods show that slight increment of passengers in the end of 2024 to the beginning of 2025. This finding suggests that the government needs to consider implementing interventions if they wish to change the current trend, such as offering discounts or year-end holiday promotions.

Downloads

Download data is not yet available.

References

[1] E. Choiriyah, U. D. Syafitri, and I. M. Sumertajaya, “Pengembangan Model Peramalan Space-Time* Studi Kasus: Data Produksi Padi di Sulawesi Selatan,” Indones. J. Stat. Its Appl., vol. 4, no. 4, pp. 579–589, 2020.

[2] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forescasting and Control, 5th ed. Hoboken: John Wiley & Sons, Inc, 2015.

[3] C. Tang, Z. Tong, Y. Wei, X. Wu, X. Tian, and J. Yang, “Time–Frequency Characteristics and SARIMA Forecasting of Atmospheric Water Vapor in East Asia,” Atmosphere (Basel)., vol. 14, no. 5, p. 899, May 2023, doi: 10.3390/atmos14050899.

[4] E. Zukhronah, W. Sulandari, and E. P. S. P. Ilahi, “Hybrid Model of Singular Spectrum Analysis with Autoregressive Integrated Moving Average and Fuzzy Time Series for Indonesian Crude Price Forecasting,” Barekeng J. Ilmu Mat. dan Terap., vol. 18, no. 3, pp. 1519–1526, Jul. 2024, doi: 10.30598/barekengvol18iss3pp1519-1526.

[5] N. Golyandina and A. Korobeynikov, “Basic Singular Spectrum Analysis and Forecasting with R,” Comput. Stat. Data Anal., Mar. 2014, doi: 10.1016/j.csda.2013.04.009.

[6] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting, 3rd ed. in Springer Texts in Statistics. Springer International Publishing, 2016.

[7] H. Hassani, “Singular Spectrum Analysis: Methodology and Comparison,” J. Data Sci., vol. 5, no. 2, pp. 239–257, Jul. 2021, doi: 10.6339/JDS.2007.05(2).396.

[8] C. Zhang and B. Lin, “Carbon Prices Forecasting Based on the Singular Spectrum Analysis, Feature Selection, and Deep Learning: Toward a Unified View,” Process Saf. Environ. Prot., vol. 177, pp. 932–946, Sep. 2023, doi: 10.1016/j.psep.2023.07.015.

[9] H. Partawijaya, “Sentiment Analysis of the Public Towards the Jakarta-Bandung High-Speed Train Service Using the Multiclass Support Vector Machine Method,” Institut Pertanian Bogor, 2024.

[10] O. T. Giantara, A. Purba, and D. Herianto, “Analisis Ekonomi dan Finansial Kereta Cepat Jakarta - Bandung,” JRSDD, vol. 6, no. 4, pp. 323–334, 2018.

[11] T. S. Hamzah and T. Kurniawan, “Analisis Manfaat dan Biaya: Kebijakan Transportasi Kereta Cepat Jakarta Bandung dari Kacamata Proyek Strategis Nasional,” J. Darma Agung, vol. 32, no. 3, pp. 101–105, 2024, doi: https://dx.doi.org.10.46930/ojsuda.v32i3.4288.

[12] M. Silfiani and F. N. Hayati, “Forecasting Number of Train Passengers Using Time Series Regression Integrated Calendar Variation and Covid 19,” J. Mat. Sains, dan Teknol., vol. 25, no. 1, pp. 9–22, 2024.

[13] L. L. Ibrahim and E. Kurniati, “Peramalan Jumlah Penumpang Kereta Api Eksekutif di Pulau Jawa Menggunakan Model SARIMA,” J. Ris. Mat., vol. 3, no. 1, pp. 73–82, Jul. 2023, doi: 10.29313/jrm.v3i1.1747.

[14] L. Martínez-Acosta, J. P. Medrano-Barboza, Á. López-Ramos, J. F. R. López, and Á. A. López-Lambraño, “SARIMA Approach to Generating Synthetic Monthly Rainfall in the Sinú River Watershed in Colombia,” Atmosphere (Basel)., vol. 11, no. 6, pp. 1–16, 2020, doi: 10.3390/atmos11060602.

[15] Z. Zeinawaqi and A. A. Dzikrullah, “Factors Affecting The Number Of Domestic Flights In Indonesia During Covid-19 Pandemic Using SARIMAX Method,” J. Mat. Stat. dan Komputasi, vol. 21, no. 1, pp. 1–9, 2024, doi: 10.20956/j.v21i1.34557.

[16] P. Stoica and Y. Selen, “Model-order selection,” IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36–47, Jul. 2004, doi: 10.1109/MSP.2004.1311138.

[17] N. Golyandina and A. Zhigljavsky, “Basic SSA,” in Singular Spectrum Analysis for Time Series, Berlin, Heidelberg, 2013, ch. 2, pp. 11–70. doi: 10.1007/978-3-642-34913-3.

[18] W. Sulandari, Subanar, M. H. Lee, and P. C. Rodrigues, “Indonesian Electricity Load Forecasting Using Singular Spectrum Analysis, Fuzzy Systems and Neural Networks,” Energy, Jan. 2020, doi: 10.1016/j.energy.2019.116408.

Downloads

Published

2025-10-08

How to Cite

[1]
L. N. A. Mualifah, “Forecasting the Number of Passengers for the Jakarta-Bandung High-Speed Rail using SARIMA and SSA Models”, JAIC, vol. 9, no. 5, pp. 2443–2449, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.