Classification of Melinjo Fruit Ripeness Using a Convolutional Neural Network (CNN) Based on Digital Images

Authors

  • Anggi Ade Kurniawan Universitas Persatuan Guru Republik Indonesia Semarang
  • Setyonigsih Wibowo Universitas Persatuan Guru Republik Indonesia Semarang
  • Nur Latifah Dwi Mutiara Sari Universitas Persatuan Guru Republik Indonesia Semarang

DOI:

https://doi.org/10.30871/jaic.v10i1.11744

Keywords:

Melinjo, Convolutional Neural Network, Classification, Deep-CNN

Abstract

The subjective and ineffective manual sorting of melinjo fruit, a key ingredient in Indonesian cuisine, results in inconsistent quality. This study aims to create and evaluate an automated classification system for judging the ripeness of Gnetum gnemon fruit in order to solve these issues and offer a reliable and objective quality control method. The approach was to create a customized Deep Convolutional Neural Network (Deep-CNN). The model was trained and evaluated using a simple dataset of 5,718 images that were separated into three maturity levels: raw, semi-ripe, and fully ripe. Twenty percent of the dataset was used for testing, and the remaining 80 percent was used for training. Image preparation techniques like contrast enhancement and scaling to 250x250 pixels were applied in order to optimize the model's input data. The evaluation was conducted using a test dataset consisting of 1,144 photos. After eight epochs of training with the Adam optimizer, the generated Deep-CNN model demonstrated remarkable efficacy with a final classification accuracy of 99.91%. The high level of performance that remained throughout the testing phase confirmed the model's strong ability to accurately identify the ripeness levels of melinjo fruit. The previously unresolved issue of automated melinjo classification is addressed in this work with a tailored and remarkably accurate (99.91%) solution. Its primary advantage is that it provides a trustworthy and unbiased technical alternative to subjective hand sorting. This directly meets industry needs by offering a scalable method to improve operational effectiveness, standardize product quality, and increase the commercial value of melinjo fruit of agricultural products.

Downloads

Download data is not yet available.

References

[1] M. Iqbal, Darmein, and I. Mawardi, “Rancang Bangun Mesin Pengupas Kulit Melinjo dengan Daya 1 HP,” Jurnal Mesin Sains Terapan, vol. 6, no. 1, pp. 13–17, 2022. doi: 10.30811/jmst.v6i1.2852.

[2] S. Koswara et al., Emping Melinjo: Modul Produksi Pangan untuk Industri Rumah Tangga. Jakarta: Direktorat Surveilan dan Penyuluhan Keamanan Pangan, Badan Pengawas Obat dan Makanan Republik Indonesia, 2020.

[3] M. Ali, A. Wulandari, and Siwidyah Desi Lastianti, “Pengendalian Mutu Pada Emping Melinjo Di Ud. Intisari Jaya Di Yogyakarta Jomblang Palbapang Bantul,” RePEc: Research Papers in Economics, Jan. 2018, doi: https://doi.org/10.31219/osf.io/cq2w4.

[4] A. Papenmeier, D. Kern, D. Hienert, Y. Kammerer, and C. Seifert, “How Accurate Does It Feel? – Human Perception of Different Types of Classification Mistakes,” CHI Conference on Human Factors in Computing Systems, Apr. 2022, doi: 10.1145/3491102.3501915.

[5] A. Sharma, R. K. Patel, P. Pranjal, B. Panchal, and S. S. Chouhan, “Computer Vision-Based Smart Monitoring and Control System for Crop,” 2024, pp. 65–82. doi: 10.1007/978-981-99-8684-2_5.

[6] Zahrotul Ilmi Wijayanti, “Penerapan Teknologi CNN Dalam Proses Pendeteksi Kematangan Buah Stroberi”, Uranus, vol. 2, no. 3, pp. 01–12, Jul. 2024

[7] A. I. Hanifah and A. Hermawan, “Klasifikasi Kematangan Pisang Menggunakan Metode Convolutional Neural Network,” Komputika : Jurnal Sistem Komputer, vol. 12, no. 2, pp. 49–56, Sep. 2023, doi: https://doi.org/10.34010/komputika.v12i2.9999

[8] M. Kinanti and Anief Fauzan Rozi, “Implementasi Convutional Neural Network Dalam Menentukan Tingkat Kematangan Mentimun Dan Tomat Berdasarkan Warna Kulit,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, pp. 10388–10394, Sep. 2024, doi: https://doi.org/10.36040/jati.v8i5.11076.

[9] B. E. Lumban Batu, W. A. Saputra, and A. Sa’adah, “Banana and Orange Classification Detection Using Convolutional Neural Network,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 13, no. 3, Dec. 2024, doi: 10.23887/janapati.v13i3.80032.

[10] Alvaro, Timur Gadzhievich Aygumov, and Movsar Musaevich Matygov, “Training of a Convolutional Neural Network for the Classification of Coffee Fruit State,” E3S Web of Conferences, vol. 537, pp. 10023–10023, Jan. 2024, doi: https://doi.org/10.1051/e3sconf/202453710023.

[11] S. Qasim, K. N. Khan, M. Yu, and M. S. Khan, “Performance Evaluation of Background Subtraction Techniques for Video Frames,” International Conference on Artificial Intelligence, pp. 102–107, Apr. 2021, doi: 10.1109/ICAI52203.2021.9445253

[12] K. Gunaranjan, K. Vijay, and P. Naveen, “Transfer Learning and Fine-tuned CNN Architecture for Dog Breed Classification,” May 2024, doi: 10.1109/aiiot58432.2024.10574709

[13] G. Y. Ong, N. Abdullah, F. Ridzuan, W. A. Mustafa, and L. H. Alzubaidi, “Enhancing Data Quality in Image Pre-processing: A Case Study on Plant Disease Classification,” Nov. 2023, doi: 10.1109/icteasd57136.2023.10584873

[14] S. J, “Fruit freshess prediction using cnn,” Indian Scientific Journal Of Research In Engineering And Management, May 2024, doi: 10.55041/ijsrem33633

[15] R. Shanmukh, “Application of Texture Analysis Techniques and Image Statistics to Fund us Images for Effective Comparison and Analysis,” Sep. 2023, doi: 10.54882/7420237411079

[16] P. Bigioi, M. C. Munteanu, A. Caliman, C. Zaharia, and D. Dinu, “A convolutional neural network,” Dec. 19, 2016 [Online].Available: https://patents.google.com/patent/WO2017129325A1/en

[17] N. K. Manaswi, “Convolutional Neural Networks,” Apress, Berkeley, CA, 2018, pp. 91–96. doi: 10.1007/978-1-4842-3516-4_6

[18] S. Geerthik, G. A. Senthil, K. J. Oliviya, and R. Keerthana, “A System and Method for Fruit Ripeness Prediction Using Transfer Learning and CNN,” Apr. 2024, doi: 10.1109/ic3iot60841.2024.10550209

[19] M. Yahya, D. Udhayanithi, and A. Venkataraman, “Automatic Fruit Quality Inspection System Using Image Processing,” International journal of scientific research in science, engineering and technology, pp. 01–08, Jun. 2023, doi: 10.32628/ijsrset23103177

[20] Y. Liu, H. Pu, H. Pu, and D.-W. Sun, “Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices,” Trends in Food Science and Technology, vol. 113, pp. 193–204, Jul. 2021, doi: 10.1016/J.TIFS.2021.04.042.

Downloads

Published

2026-02-04

How to Cite

[1]
A. A. Kurniawan, S. Wibowo, and N. L. D. Mutiara Sari, “Classification of Melinjo Fruit Ripeness Using a Convolutional Neural Network (CNN) Based on Digital Images”, JAIC, vol. 10, no. 1, pp. 558–565, Feb. 2026.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.