Comparison of Naive Bayes and Support Vector Machine (SVM) Algorithms for Classifying the Maturity Level of Melon
DOI:
https://doi.org/10.30871/jaic.v10i1.11737Keywords:
Digital Image Processing, Histogram of Oriented Gradients (HOG), Melon Ripeness Classification, Naive Bayes, Support Vector Machine (SVM)Abstract
This determination of melon fruit ripeness is an important factor in ensuring fruit quality in terms of taste, texture, and market value. However, ripeness assessment is still predominantly performed manually and relies on subjective judgement, which may lead to decreased product quality, inefficient distribution processes, and potential economic losses. Therefore, an automated approach for classifying melon ripeness levels is required. This study aims to analyze and compare the performance Support Vector Machine (SVM) and Naïve Bayes algorithms for melon ripeness classification based on digital images using Histogram of Oriented Gradients (HOG) feature extraction method. The dataset used in this study consists of 630 melon images divided into three ripeness classes, 209 unripe, 220 semi ripe, and 201 ripe images. The research process includes image preprocessing, data augmentation, feature extraction, model training, and performance evaluation. Experimental results show that the SVM with a Radial Basis Function (RBF) kernel, using parameter C=10 and the default value, achieves the highest classification accuracy of 94%, while the Naïve Bayes algorithm attains an accuracy of 65%. These results indicate that the SVM algorithm demonstrates superior classification performance compared to Naïve Bayes in determining melon ripeness levels.
Downloads
References
[1] D. Rika Widianita, “Implementasi Programsentra Hortikulturadi Desa Wulurmaatuskecamatan Modoindingkabupaten Minahasa Selatan,” AT-TAWASSUTH J. Ekon. Islam, vol. VIII, no. I, pp. 1–19, 2023.
[2] Humas Ditjen Hortikultura, “Indonesia Kaya Berbagai Melon Unggulan,” Directorat Jenderal Hortikultura Kementrian Pertanian. [Online]. Available: https://hortikultura.pertanian.go.id/indonesia-kaya-berbagai-melon-unggulan/#:~:text=Varietas melon di Indonesia juga,dengan kondisi agroklimat di Indonesia.
[3] S. Afifuddin Latif Adiredjo, Noer Rahmi Ardiarini, Mochammad Roviq, Pengembangan dan Hibridisasi Tanaman Melon. Universitas Brawijaya Press, 2023. [Online]. Available: https://www.google.co.id/books/edition/Pengembangan_dan_Hibridisasi_Tanaman_Mel/Kyb5EAAAQBAJ?hl=id&gbpv=0
[4] E. Widyastuti, A. Hermawan, and D. Avianto, “Klasifikasi Tomat Berdasarkan Varietas Dengan Ekstraksi Fitur Rgb Dan Algoritma Naïve Bayes,” Indones. J. Inf. Syst., vol. 8, no. 1, pp. 127–137, 2025, [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/indexEviWidyastuti%7Chttp://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index%7C
[5] R. Mardianto, S. Quinevera, and S. Rochimah, “Perbandingan Metode Random Forest, Convolutional Neural Network, dan Support Vector Machine Untuk Klasifikasi Jenis Mangga,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 63–71, 2024, doi: 10.52158/jacost.v5i1.742.
[6] Ardiansyah, Buku Monograf Pengenalan Objek Dalam Bidang Kesehatan. PT. Sonpedia Publishing Indonesia, 2024. [Online]. Available: https://www.google.co.id/books/edition/Buku_Monograf_Pengenalan_Objek_Dalam_Bid/z50tEQAAQBAJ?hl=id&gbpv=0
[7] M. R. B. Keliat and M. Ikhsan, “Komparasi Algoritma Support Vector Machine dan Naïve Bayes pada Klasifikasi Jenis Buah Kurma berdasarkan Citra Hue Saturation Value Comparison of Support Vector Machine and Naïve Bayes Algorithms on Date Fruit Type Classification based on Hue Saturation V,” vol. 14, pp. 470–481, 2025.
[8] R. A. Saputra, D. Puspitasari, and T. Baidawi, “Deteksi Kematangan Buah Melon dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM,” J. Infortech, vol. 4, no. 2, pp. 200–206, 2022.
[9] D. I. Mulyana and D. R. Wibowo, “Implementasi Tingkat Kematangan Buah Monk Dengan Menggunakan Ekstraksi Gray-Level Co-Occurrence Matrix (Glcm) Dan Support Vector Machine (SVM),” JINTEKS (Jurnal Inform. Teknol. dan Sains), vol. 5, no. 3, pp. 334–339, 2023.
[10] A. J. Saputra and W. Andriyani, “Fruit Image Classification Using Naïve Bayes Algorithm with Histogram of Oriented Gradients (HOG) Feature Extraction,” J. Artif. Intell. Softw. Eng., vol. 5, no. 1, pp. 2115–227, 2025.
[11] D. Mualfah, H. Rivaldi, J. Al Amin, and Sunanto, “Klasifikasi Buah Jeruk Lemon Berdasarkan Tingkat Kematangan Menggunakan Metode SVM dan Naive Bayes,” J. Softw. Eng. Inf. Syst., vol. Vol. 5, no. No. 2, p. Hal. 114-121, 2025, [Online]. Available: https://ejurnal.umri.ac.id/index.php/SEIS/article/view/9952/3867
[12] R. A. Zakiah, S. Wahjuni, and W. B. Suwarno, “Pemilihan Algoritma Machine Learning untuk Perangkat dengan Komputasi Terbatas pada Deteksi Kematangan Buah Melon Berjala,” Ilmu Komput. dan Agri-informatika, vol. 10, no. 2, 2023.
[13] O. Veza, S. Agustini, and J. Harnaranda, Pengenalan Dasar Pengolahan Citra. Cendikia Mulia Mandiri, 2025. [Online]. Available: http://google.co.id/books/edition/PENGENALAN_DASAR_PENGOLAHAN_CITRA/7lhaEQAAQBAJ?hl=id&gbpv=0
[14] R. Jordy and D. Ariatmanto, “Perbandingan Metode Ekstraksi Fitur LBP, GLCM, dan Canny dalam Klasifikasi Penyakit Daun Padi dengan KNN,” J. Bangkit Indones., vol. 14, no. 2, pp. 44–51, 2025, doi: 10.52771/bangkitindonesia.v14i2.452.
[15] A. I. Ozturk and O. Yildirim, “A comparative analysis of HOG and LBP feature extraction techniques in AdaBoost for image recognition,” Int. J. Innov. Res. Sci. Stud., vol. 8, no. 2, pp. 696–703, 2025, doi: 10.53894/ijirss.v8i2.5290.
[16] Kusnawi and A. H. Pratama, Belajar Mudah Dan Singkat Machine Learning Panduan Praktis dengan Studi Kasus, Kode Program, dan Dataset. Penerbit Andi, 2024. [Online]. Available: https://www.google.co.id/books/edition/BELAJAR_MUDAH_DAN_SINGKAT_MACHINE_LEARNI/pFMOEQAAQBAJ?hl=id&gbpv=0
[17] F. Sabry, Naive Bayes Classifier: Fundamentals and Applications. in Artificial Intelligence. One Billion Knowledgeable, 2023. [Online]. Available: https://books.google.co.id/books?id=DPTGEAAAQBAJ
[18] Adriyendi, Artificial Intelligence Dengan Model Diskriminatif Dan Model Generatif (Pendekatan Saintifik Populer pada Riset Kolaboratif). Penerbit Widina, 2025. [Online]. Available: https://www.google.co.id/books/edition/ARTIFICIAL_INTELLIGENCE_DENGAN_MODEL_DIS/lLFbEQAAQBAJ?hl=id&gbpv=0
[19] M. Sanjaya, Fisika Komputasi Berbasis Machine Learning dengan Pemrograman Python - Penerbit Bolabot. Bolabot, 2024. [Online]. Available: https://www.google.co.id/books/edition/Fisika_Komputasi_Berbasis_Machine_Learni/-gI-EQAAQBAJ?hl=id&gbpv=0
[20] T. V. Saradhi, “A Study on Hyperparameter Tuning in Support Vector Machines and its Impact on Model Accuracy,” Glob. J. Eng. Innov. Interdiscip. Res., vol. Vol 5, no. Issue 1, 2025, [Online]. Available: https://www.sciencexcel.com/articles/F40GgxWMc9bgbUjTrQ8MzRRVQghjGIOxboI8Rmwa.pdf
[21] N. B. Binna, T. Rohana, H. Y. Novita, and S. Faisal, “Klasifikasi Jenis Buah Tomat Menggunakan Algoritma K-Nearest Neighbordan Support Vector Machine,” J. Inform. Teknol. dan Sains, vol. Vol. 7, no. No. 2, p. Hal. 800-807, 2025, [Online]. Available: https://www.jurnal.uts.ac.id/JINTEKS/article/view/5743/2617
[22] Y. Nurdin, K. Saddami, and Nasaruddin, Pengenalan Praktis Supervised Machine Learning: Dengan Jupyter Notebook. USK Press, 2025. [Online]. Available: https://www.google.co.id/books/edition/Pengenalan_Praktis_Supervised_Machine_Le/LIxREQAAQBAJ?hl=id&gbpv=0
[23] D. Saputra, A. A. F. ’Alauddin, and M. Azizan, “Comparative Analysis of Gaussian Naïve Bayes and Categorical Naïve Bayes Algorithms with Laplace Smoothing in COVID-19 Detection,” J. Ilmu Komput. dan Inform., vol. 5, no. 1, pp. 69–78, 2025, doi: 10.54082/jiki.286.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Leza Maulidina Salma, Irma Handayani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








