Comparison of Naive Bayes and Support Vector Machine (SVM) Algorithms for Classifying the Maturity Level of Melon

Authors

  • Leza Maulidina Salma Universitas Teknologi Yogyakarta
  • Irma Handayani Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v10i1.11737

Keywords:

Digital Image Processing, Histogram of Oriented Gradients (HOG), Melon Ripeness Classification, Naive Bayes, Support Vector Machine (SVM)

Abstract

This determination of melon fruit ripeness is an important factor in ensuring fruit quality in terms of taste, texture, and market value. However, ripeness assessment is still predominantly performed manually and relies on subjective judgement, which may lead to decreased product quality, inefficient distribution processes, and potential economic losses. Therefore, an automated approach for classifying melon ripeness levels is required. This study aims to analyze and compare the performance Support Vector Machine (SVM) and Naïve Bayes algorithms for melon ripeness classification based on digital images using Histogram of Oriented Gradients (HOG) feature extraction method. The dataset used in this study consists of 630 melon images divided into three ripeness classes, 209 unripe, 220 semi ripe, and 201 ripe images. The research process includes image preprocessing, data augmentation, feature extraction, model training, and performance evaluation. Experimental results show that the SVM with a Radial Basis Function (RBF) kernel, using parameter C=10 and the default value, achieves the highest classification accuracy of 94%, while the Naïve Bayes algorithm attains an accuracy of 65%. These results indicate that the SVM algorithm demonstrates superior classification performance compared to Naïve Bayes in determining melon ripeness levels.

Downloads

Download data is not yet available.

References

[1] D. Rika Widianita, “Implementasi Programsentra Hortikulturadi Desa Wulurmaatuskecamatan Modoindingkabupaten Minahasa Selatan,” AT-TAWASSUTH J. Ekon. Islam, vol. VIII, no. I, pp. 1–19, 2023.

[2] Humas Ditjen Hortikultura, “Indonesia Kaya Berbagai Melon Unggulan,” Directorat Jenderal Hortikultura Kementrian Pertanian. [Online]. Available: https://hortikultura.pertanian.go.id/indonesia-kaya-berbagai-melon-unggulan/#:~:text=Varietas melon di Indonesia juga,dengan kondisi agroklimat di Indonesia.

[3] S. Afifuddin Latif Adiredjo, Noer Rahmi Ardiarini, Mochammad Roviq, Pengembangan dan Hibridisasi Tanaman Melon. Universitas Brawijaya Press, 2023. [Online]. Available: https://www.google.co.id/books/edition/Pengembangan_dan_Hibridisasi_Tanaman_Mel/Kyb5EAAAQBAJ?hl=id&gbpv=0

[4] E. Widyastuti, A. Hermawan, and D. Avianto, “Klasifikasi Tomat Berdasarkan Varietas Dengan Ekstraksi Fitur Rgb Dan Algoritma Naïve Bayes,” Indones. J. Inf. Syst., vol. 8, no. 1, pp. 127–137, 2025, [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/indexEviWidyastuti%7Chttp://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index%7C

[5] R. Mardianto, S. Quinevera, and S. Rochimah, “Perbandingan Metode Random Forest, Convolutional Neural Network, dan Support Vector Machine Untuk Klasifikasi Jenis Mangga,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 63–71, 2024, doi: 10.52158/jacost.v5i1.742.

[6] Ardiansyah, Buku Monograf Pengenalan Objek Dalam Bidang Kesehatan. PT. Sonpedia Publishing Indonesia, 2024. [Online]. Available: https://www.google.co.id/books/edition/Buku_Monograf_Pengenalan_Objek_Dalam_Bid/z50tEQAAQBAJ?hl=id&gbpv=0

[7] M. R. B. Keliat and M. Ikhsan, “Komparasi Algoritma Support Vector Machine dan Naïve Bayes pada Klasifikasi Jenis Buah Kurma berdasarkan Citra Hue Saturation Value Comparison of Support Vector Machine and Naïve Bayes Algorithms on Date Fruit Type Classification based on Hue Saturation V,” vol. 14, pp. 470–481, 2025.

[8] R. A. Saputra, D. Puspitasari, and T. Baidawi, “Deteksi Kematangan Buah Melon dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM,” J. Infortech, vol. 4, no. 2, pp. 200–206, 2022.

[9] D. I. Mulyana and D. R. Wibowo, “Implementasi Tingkat Kematangan Buah Monk Dengan Menggunakan Ekstraksi Gray-Level Co-Occurrence Matrix (Glcm) Dan Support Vector Machine (SVM),” JINTEKS (Jurnal Inform. Teknol. dan Sains), vol. 5, no. 3, pp. 334–339, 2023.

[10] A. J. Saputra and W. Andriyani, “Fruit Image Classification Using Naïve Bayes Algorithm with Histogram of Oriented Gradients (HOG) Feature Extraction,” J. Artif. Intell. Softw. Eng., vol. 5, no. 1, pp. 2115–227, 2025.

[11] D. Mualfah, H. Rivaldi, J. Al Amin, and Sunanto, “Klasifikasi Buah Jeruk Lemon Berdasarkan Tingkat Kematangan Menggunakan Metode SVM dan Naive Bayes,” J. Softw. Eng. Inf. Syst., vol. Vol. 5, no. No. 2, p. Hal. 114-121, 2025, [Online]. Available: https://ejurnal.umri.ac.id/index.php/SEIS/article/view/9952/3867

[12] R. A. Zakiah, S. Wahjuni, and W. B. Suwarno, “Pemilihan Algoritma Machine Learning untuk Perangkat dengan Komputasi Terbatas pada Deteksi Kematangan Buah Melon Berjala,” Ilmu Komput. dan Agri-informatika, vol. 10, no. 2, 2023.

[13] O. Veza, S. Agustini, and J. Harnaranda, Pengenalan Dasar Pengolahan Citra. Cendikia Mulia Mandiri, 2025. [Online]. Available: http://google.co.id/books/edition/PENGENALAN_DASAR_PENGOLAHAN_CITRA/7lhaEQAAQBAJ?hl=id&gbpv=0

[14] R. Jordy and D. Ariatmanto, “Perbandingan Metode Ekstraksi Fitur LBP, GLCM, dan Canny dalam Klasifikasi Penyakit Daun Padi dengan KNN,” J. Bangkit Indones., vol. 14, no. 2, pp. 44–51, 2025, doi: 10.52771/bangkitindonesia.v14i2.452.

[15] A. I. Ozturk and O. Yildirim, “A comparative analysis of HOG and LBP feature extraction techniques in AdaBoost for image recognition,” Int. J. Innov. Res. Sci. Stud., vol. 8, no. 2, pp. 696–703, 2025, doi: 10.53894/ijirss.v8i2.5290.

[16] Kusnawi and A. H. Pratama, Belajar Mudah Dan Singkat Machine Learning Panduan Praktis dengan Studi Kasus, Kode Program, dan Dataset. Penerbit Andi, 2024. [Online]. Available: https://www.google.co.id/books/edition/BELAJAR_MUDAH_DAN_SINGKAT_MACHINE_LEARNI/pFMOEQAAQBAJ?hl=id&gbpv=0

[17] F. Sabry, Naive Bayes Classifier: Fundamentals and Applications. in Artificial Intelligence. One Billion Knowledgeable, 2023. [Online]. Available: https://books.google.co.id/books?id=DPTGEAAAQBAJ

[18] Adriyendi, Artificial Intelligence Dengan Model Diskriminatif Dan Model Generatif (Pendekatan Saintifik Populer pada Riset Kolaboratif). Penerbit Widina, 2025. [Online]. Available: https://www.google.co.id/books/edition/ARTIFICIAL_INTELLIGENCE_DENGAN_MODEL_DIS/lLFbEQAAQBAJ?hl=id&gbpv=0

[19] M. Sanjaya, Fisika Komputasi Berbasis Machine Learning dengan Pemrograman Python - Penerbit Bolabot. Bolabot, 2024. [Online]. Available: https://www.google.co.id/books/edition/Fisika_Komputasi_Berbasis_Machine_Learni/-gI-EQAAQBAJ?hl=id&gbpv=0

[20] T. V. Saradhi, “A Study on Hyperparameter Tuning in Support Vector Machines and its Impact on Model Accuracy,” Glob. J. Eng. Innov. Interdiscip. Res., vol. Vol 5, no. Issue 1, 2025, [Online]. Available: https://www.sciencexcel.com/articles/F40GgxWMc9bgbUjTrQ8MzRRVQghjGIOxboI8Rmwa.pdf

[21] N. B. Binna, T. Rohana, H. Y. Novita, and S. Faisal, “Klasifikasi Jenis Buah Tomat Menggunakan Algoritma K-Nearest Neighbordan Support Vector Machine,” J. Inform. Teknol. dan Sains, vol. Vol. 7, no. No. 2, p. Hal. 800-807, 2025, [Online]. Available: https://www.jurnal.uts.ac.id/JINTEKS/article/view/5743/2617

[22] Y. Nurdin, K. Saddami, and Nasaruddin, Pengenalan Praktis Supervised Machine Learning: Dengan Jupyter Notebook. USK Press, 2025. [Online]. Available: https://www.google.co.id/books/edition/Pengenalan_Praktis_Supervised_Machine_Le/LIxREQAAQBAJ?hl=id&gbpv=0

[23] D. Saputra, A. A. F. ’Alauddin, and M. Azizan, “Comparative Analysis of Gaussian Naïve Bayes and Categorical Naïve Bayes Algorithms with Laplace Smoothing in COVID-19 Detection,” J. Ilmu Komput. dan Inform., vol. 5, no. 1, pp. 69–78, 2025, doi: 10.54082/jiki.286.

Downloads

Published

2026-02-09

How to Cite

[1]
L. M. Salma and I. Handayani, “Comparison of Naive Bayes and Support Vector Machine (SVM) Algorithms for Classifying the Maturity Level of Melon”, JAIC, vol. 10, no. 1, pp. 829–836, Feb. 2026.

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.