Classification of Cat Skin Diseases Using MobileNetV2 Architecture with Transfer Learning
DOI:
https://doi.org/10.30871/jaic.v9i6.11469Keywords:
Classification, Convolutional Neural Network, MobileNetV2, Transfer Learning, Cat Skin DiseaseAbstract
Skin diseases in cats often present similar visual symptoms across different conditions, making early and accurate diagnosis challenging for pet owners and veterinarians. This study develops a classification model for cat skin diseases: Fungal Infection, Flea Infestation, Scabies, and Healthy, using the MobileNetV2 architecture with a transfer learning approach. A total of 1,600 RGB images were collected from public datasets and divided into 1,280 training and 320 validation samples. The dataset underwent preprocessing, normalization, and data augmentation techniques such as rotation, shear, zoom, and flipping to enhance model generalization and reduce overfitting. Several experiments were conducted to analyze the impact of input size and learning rate adjustments on model performance. The optimal configuration was achieved using an input size of 224×224 pixels, a learning rate of 0.001, and augmentation applied to the training data. The resulting model achieved a validation accuracy of 91.8%, with an average precision, recall, and F1-score of 91%, demonstrating balanced performance across all classes. These results indicate that the MobileNetV2 architecture, combined with appropriate hyperparameter tuning and augmentation, provides a reliable and computationally efficient method for automatic identification of cat skin diseases. This approach can support early diagnosis, improve animal welfare, and serve as a foundation for the development of practical veterinary diagnostic applications.
Downloads
References
[1] T. Wall, “Graph: Cats and dogs lead US pet ownership growth 2023-2025.” Accessed: Sep. 30, 2025. [Online]. Available: https://www.petfoodindustry.com/pet-ownership-statistics/article/15747936/chart-cats-and-dogs-lead-us-pet-ownership-growth-20232025
[2] E. Sutriyanto, “Mayoritas Pemilik Datangi Klinik Saat Hewan Kesayangan Sakit dan Perlu Pengobatan.” Accessed: Sep. 30, 2025. [Online]. Available: https://www.tribunnews.com/nasional/2023/12/16/mayoritas-pemilik-datangi-klinik-saat-hewan-kesayangan-sakit-dan-perlu-pengobatan
[3] L. R. Finka, “Conspecific and Human Sociality in the Domestic Cat: Consideration of Proximate Mechanisms, Human Selection and Implications for Cat Welfare,” Animals, vol. 12, no. 3, p. 298, Jan. 2022, doi: 10.3390/ani12030298.
[4] H. H. N. Alautaish, H. A. Naji, Z. A. H. Saud, and B. G. Ghalib, “Clinical study of common bacterial, fungal and parasitic skin diseases in cats,” Adv. Life Sci., vol. 11, no. 3, pp. 580–584, 2024, doi: 10.62940/als.v11i3.1873.
[5] N. Yuliansyah, R. Ferdian, R. S. Zamzami, R. Daud, and A. Hamzah, “Prevalence of dermatophytosis in cats at Alfa Anima Clinic Banda Aceh,” Int. J. Trop. Vet. Biomed. Res., vol. 9, no. 1, pp. 56–59, 2024, [Online]. Available: www.jurnal.usk.ac.id/IJTVBR
[6] N. Azrizal-Wahid, M. Sofian-Azirun, and V. L. Low, “Risk factors associated with flea infestation on cats,” Trop. Biomed., vol. 36, no. 4, pp. 810–821, 2019.
[7] N. Qudsiyati, A. Khirqah, A. Muntolip, D. Priyowidodo, S. Indarjulianto, and R. W. Nurcahyo, “Cat Scabies Prevalence at Animal Health Center Pemalang,” J. Sain Vet., vol. 41, no. 3, p. 354, 2023, doi: 10.22146/jsv.79996.
[8] L. A. Nadira, S. Kayati Widyastuti, and I. G. Soma, “Dermatophytosis Caused By Trichophyton Spp. In A Local Kitten,” Vet. Sci. Med. J., vol. 3, no. 3, pp. 271–280, Oct. 2023, doi: 10.24843/vsmj.2023.v5.i10.p06.
[9] D. Prasetyo, I. A. Amri, S. Murwani, and D. Qosimah, “Peneguhan diagnosa scabiosis metode sitologi kulit pada kucing domestik di Kota Malang,” ARSHI Vet. Lett., vol. 3, no. 2, pp. 27–28, May 2019, doi: 10.29244/avl.3.2.27-28.
[10] Imam Fathurrahman, Mahpuz, Muhammad Djamaluddin, Lalu Kerta Wijaya, and Ida Wahidah, “Pengembangan Model Convolutional Neural Network (CNN) untuk Klasifikasi Penyakit Kulit Berbasis Citra Digital,” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 298–308, Jan. 2025, doi: 10.29408/jit.v8i1.28655.
[11] A. R. Hermanto, A. Aziz, and S. Sudianto, “Perbandingan Arsitektur MobileNetV2 dan RestNet50 untuk Klasifikasi Jenis Buah Kurma Comparison of MobileNetV2 and RestNet50 Architectures for Date Fruit Classification by Type,” J. Sist. dan Teknol. Inf., vol. 12, no. 4, pp. 630–637, 2024, doi: 10.26418/justin.v12i4.80358.
[12] I. Y. Pangestu and S. R. Ramadhani, “Perancangan Sistem Deteksi Penyakit Kulit Pada Kucing Menggunakan Deep Learning Berbasis Android,” Teknika, vol. 12, no. 3, pp. 173–182, Oct. 2023, doi: 10.34148/teknika.v12i3.673.
[13] M. Najmi, “Hybrid Mobilenetv2 Dan Extreme Gradient Boosting Untuk Klasifikasi Kerusakan Bangunan,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 3, pp. 402–412, 2025, doi: 10.23960/jitet.v13i3.6858.
[14] V. Oktaviani, N. Rosmawarni, and M. P. Muslim, “Perbandingan Kinerja Random Forest Dan Smote Random Forest Dalam Mendeteksi Dan Mengukur Tingkat Stres Pada Mahasiswa Tingkat Akhir,” Inform. J. Ilmu Komput., vol. 20, no. 1, pp. 43–49, 2024, doi: 10.52958/iftk.v20i1.9158.
[15] J. Simangunsong, N. D. Simanjuntak, and A. A. Matondang, “Penerapan Transfer Learning untuk Klasifikasi Citra Bunga Berbasis Convolutional Neural Network,” J. Minfo Polgan, vol. 14, no. 1, pp. 1062–1067, 2025, doi: 10.33395/jmp.v14i1.14980.
[16] Dede Husen, “Evaluasi Teknik Augmentasi Data Untuk Klasifikasi Tumor Otak Menggunakan Cnn Pada Citra Mri,” Tek. Teknol. Inf. dan Multimed., vol. 5, no. 2, pp. 219–228, 2024, doi: 10.46764/teknimedia.v5i2.220.
[17] N. wangsa Kencana, R. Umar, and Murinto, “Implementasi Transfer Learning Untuk Klasifikasi Jenis Ras Ayam Menggunakan Arsitektur MobileNetV2,” J. Inform. Polinema, vol. 11, pp. 147–154, 2025.
[18] R. Hikmianto and E. Utami, “Sistemasi: Jurnal Sistem Informasi Klasifikasi Algoritma Jaringan Syaraf Tiruan Konvolusi untuk Deteksi Hama pada Kangkung Classification using Convolutional Neural Network Algorithms for Pest Detection in Water Spinach,” J. Sist. Inf., vol. 14, no. 1, pp. 342–353, 2025, [Online]. Available: http://sistemasi.ftik.unisi.ac.id
[19] F. Zaelani and Y. Miftahuddin, “Perbandingan Metode EfficientNetB3 dan MobileNetV2 Untuk Identifikasi Jenis Buah-buahan Menggunakan Fitur Daun,” J. Ilm. Teknol. Infomasi Terap., vol. 9, no. 1, pp. 1–11, 2022, doi: 10.33197/jitter.vol9.iss1.2022.911.
[20] F. A. Prayogi, F. H. Arvianto, D. R. Pratama, and S. Sugiyanto, “Mushroom Classification Using Convolutional Neural Network MobileNetV2 Architecture for Overfitting Mitigation and Enhanced Model Generalization,” J. Appl. Informatics Comput., vol. 9, no. 4, pp. 1770–1777, Aug. 2025, doi: 10.30871/jaic.v9i4.10183.
[21] D. Dhimas, P. Putra, G. Kurnia Anaga, and W. T. Fitriyana, “Implementasi Algoritma Convolutional Neural Network Arsitektur Mobilenetv2 Untuk Klasifikasi Ekspresi Wajah Pada Dataset FER,” Pros. Semin. Nas. Teknol. Dan Sains, vol. 3, no. 1, pp. 291–297, 2024.
[22] M. B. Kurniawan and E. Utami, “Performance Comparison of ResNet50, VGG16, and MobileNetV2 for Brain Tumor Classification on MRI Images,” Sistemasi, vol. 14, no. 2, p. 767, 2025, doi: 10.32520/stmsi.v14i2.5054.
[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.
[24] P. D. Wardani, “Klasifikasi Tipe Kematangan Pisang Menggunakan Metode Ensemble Convolutional Neural Network (CNN),” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 8, no. 9, pp. 1–10, 2017, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14157
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dian Saputra Aji, Wahid Miftahul Ashari, Dony Ariyus

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








