Analysis of Deep Learning Algorithms Using ConvNeXt and Vision Transformer for Brain Tumor Disease

Authors

  • Gilang Ekayanda Universitas Amikom Yogyakarta
  • Majid Rahardi Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i6.11438

Keywords:

Brain Tumor, Classification, ConvNeXt, Deep Learning, Vision Transformer

Abstract

This study aims to conduct a comparative analysis and identify the most effective deep learning architecture between ConvNeXt and Vision Transformer (ViT) for the automated classification of brain tumors from MRI imagery. Rapid and accurate brain tumor diagnosis is crucial; however, the manual interpretation of MRI scans is time-consuming and reliant on specialist expertise, creating an urgent need for reliable automation in brain tumor diagnosis. This research utilizes a dataset of 4,600 images, balanced between 2,513 'Brain Tumor' and 2,087 'Healthy' instances. A robust 5-Fold Cross-Validation methodology was employed to evaluate model performance, wherein the data was divided into five folds, each consisting of 920 images, ensuring every image served as both training and testing data. The quantitative results demonstrated high efficacy from both models, although ConvNeXt achieved a slight, consistent advantage. ConvNeXt obtained an accuracy of 99.13%, precision of 99.13%, recall of 99.13%, and an F1-Score of 99.13%. In comparison, the ViT model scored an accuracy of 98.13%, precision of 98.14%, recall of 98.13%, and an F1-Score of 98.13%. This quantitative superiority was validated through qualitative analysis using saliency maps, which confirmed that the models' computational attention was accurately focused on the anatomical locations of the actual tumor lesions.

Downloads

Download data is not yet available.

References

[1] F. A. A. Harahap, A. N. Nafisa, E. N. D. B. Purba, and N. A. Putri, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model Mobilenetv2 Dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary Dan Meningioma,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 5, no. 1, pp. 53–61, 2023, doi: 10.29303/jtika.v5i1.234.

[2] B. S. E. Dwi and D. R. I. M. Setiadi, “Deteksi Tumor Otak Dengan Metode Convolutional Neural Network,” J. Eksplora Inform., vol. 13, no. 2, pp. 188–197, 2024, doi: 10.30864/eksplora.v13i2.971.

[3] M. Kristian, S. Andryana, and A. Gunaryati, “Diagnosa Penyakit Tumor Otak Menggunakan Metode Waterfall Dan Algoritma Depth First Search,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 11–24, 2021, doi: 10.29100/jipi.v6i1.1840.

[4] T. A. (Tika) Mutiara and Q. N. (Qudsiah) Azizah, “Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine,” J. Khatulistiwa Inform., vol. 4, no. 1, pp. 45–50, 2022, [Online]. Available: https://www.neliti.com/publications/491268/

[5] R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” J. IT, vol. 11, no. 3, pp. 55–59, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index

[6] A. Prayogi, A. C. Siregar, and R. W. S. Insani, “Deteksi Tumor Otak Menggunakan Metode Watershed dan Thresholding Pada Citra MRI,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 12, no. 3, p. 1761, 2023, doi: 10.35889/jutisi.v12i3.1688.

[7] T. Hidayat, D. M. Dama, and K. S. D. Irmanti, “Analisis Komparatif Metode Peningkatan Kualitas Citra Digital untuk Deteksi Area Tubercoluma pada Citra MRI,” J-Innovation, vol. 13, no. 2, pp. 72–77, 2024, doi: 10.55600/jipa.v13i2.289.

[8] P. Laksono, H. Harliana, and T. Prabowo, “Deteksi Tumor Otak Melalui Penerapan GLCM dan Naïve Bayes Classification,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 5, no. 1, pp. 41–48, 2023, doi: 10.46772/intech.v5i1.1286.

[9] A. J. Sinulingga, D. R. Manalu, and S. Manurung, “Klasifikasi Jenis Tumor Otak Berdasarkan Citra Glioma Menggunakan Metode Support Vector Machine,” Method. J. Tek. Inform. dan Sist. Inf., vol. 9, no. 2, pp. 23–25, 2023, doi: 10.46880/mtk.v9i2.1887.

[10] A. Azhar, B. Siswoyo, D. Pratama, K. Anam, and H. Susana, “Penerapan Algoritma Convolutional Neural Network (Cnn) Untuk Diagnosa Tumor Otak,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1797–1801, 2024, doi: 10.36040/jati.v8i2.8242.

[11] A. B. A. Aulia and Alamsyah, “Peningkatan Hiperparameter Framework Deep Learning VGG-16 untuk Pendeteksian Tumor Otak pada Teknologi MRI,” Indones. J. Math. Nat. Sci., vol. 47, no. 2, pp. 99–107, 2024, [Online]. Available: https://journal.unnes.ac.id/journals/JM/index

[12] M. L. Septipalan, M. S. Hibrizi, N. Latifah, R. Lina, and F. Bimantoro, “Klasifikasi Tumor Otak Menggunakan CNN Dengan Arsitektur Resnet50,” Semin. Nas. Teknol. Sains, vol. 3, no. 1, pp. 103–108, 2024, doi: 10.29407/stains.v3i1.4357.

[13] M. N. M. Hakim, A. B. Nugroho, and A. E. Minarno, “Prediksi Tumor Otak Menggunakan Metode Convolutional Neural Network,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 17, no. 1, p. 48, 2023, doi: 10.30872/jim.v17i1.5246.

[14] R. S. Passa, S. Nurmaini, and D. P. Rini, “Deteksi Tumor Otak Pada Magnetic Resonance Imaging Menggunakan Yolov7,” J. Ilm. Matrik, vol. 25, no. 2, pp. 116–121, 2023, doi: 10.33557/jurnalmatrik.v25i2.2404.

[15] O. A. Supriadi, E. Utami, and D. Ariatmanto, “Deteksi Tumor Otak Melalui Gambar MRI Berdasarkan Vision Transformers dengan Tensorflow dan Keras,” J. Inform. Univ. Pamulang, vol. 8, no. 3, pp. 385–392, 2023, doi: 10.32493/informatika.v8i3.32707.

[16] Y. I. Salsabila, H. Mustofa, and M. A. Ulinuha, “Klasifikasi Citra Tumor Otak Menggunakan Teknik Transfer Learning Pada Arsitektur Resnet-50,” J. Inf. Syst. Informatics Comput. Issue Period, vol. 9, no. 1, pp. 128–139, 2025, doi: 10.52362/jisicom.v9i1.1925.

[17] D. Husen, “Klasifikasi Citra MRI Tumor Otak Menggunakan Metode Convolutional Neural Network,” bit-Tech, vol. 7, no. 1, pp. 143–152, 2024, doi: 10.32877/bt.v7i1.1576.

[18] W. Wijiyanto, A. I. Pradana, S. Sopingi, and V. Atina, “Teknik K-Fold Cross Validation untuk Mengevaluasi Kinerja Mahasiswa,” J. Algoritm., vol. 21, no. 1, pp. 239–248, 2024, doi: 10.33364/algoritma/v.21-1.1618.

[19] Y. N. Fuadah, I. D. Ubaidullah, N. Ibrahim, F. F. Taliningsing, N. K. SY, and M. A. Pramuditho, “Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 3, p. 728, 2022, doi: 10.26760/elkomika.v10i3.728.

[20] H. Hafid, “Penerapan K-Fold Cross Validation untuk Menganalisis Kinerja Algoritma K-Nearest Neighbor pada Data Kasus Covid-19 di Indonesia,” J. Math., vol. 6, no. 2, pp. 161–168, 2023, [Online]. Available: http://www.ojs.unm.ac.id/jmathcos

Downloads

Published

2025-12-06

How to Cite

[1]
G. Ekayanda and M. Rahardi, “Analysis of Deep Learning Algorithms Using ConvNeXt and Vision Transformer for Brain Tumor Disease”, JAIC, vol. 9, no. 6, pp. 3295–3304, Dec. 2025.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.