Analysis of Deep Learning Algorithms Using ConvNeXt and Vision Transformer for Brain Tumor Disease
DOI:
https://doi.org/10.30871/jaic.v9i6.11438Keywords:
Brain Tumor, Classification, ConvNeXt, Deep Learning, Vision TransformerAbstract
This study aims to conduct a comparative analysis and identify the most effective deep learning architecture between ConvNeXt and Vision Transformer (ViT) for the automated classification of brain tumors from MRI imagery. Rapid and accurate brain tumor diagnosis is crucial; however, the manual interpretation of MRI scans is time-consuming and reliant on specialist expertise, creating an urgent need for reliable automation in brain tumor diagnosis. This research utilizes a dataset of 4,600 images, balanced between 2,513 'Brain Tumor' and 2,087 'Healthy' instances. A robust 5-Fold Cross-Validation methodology was employed to evaluate model performance, wherein the data was divided into five folds, each consisting of 920 images, ensuring every image served as both training and testing data. The quantitative results demonstrated high efficacy from both models, although ConvNeXt achieved a slight, consistent advantage. ConvNeXt obtained an accuracy of 99.13%, precision of 99.13%, recall of 99.13%, and an F1-Score of 99.13%. In comparison, the ViT model scored an accuracy of 98.13%, precision of 98.14%, recall of 98.13%, and an F1-Score of 98.13%. This quantitative superiority was validated through qualitative analysis using saliency maps, which confirmed that the models' computational attention was accurately focused on the anatomical locations of the actual tumor lesions.
Downloads
References
[1] F. A. A. Harahap, A. N. Nafisa, E. N. D. B. Purba, and N. A. Putri, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model Mobilenetv2 Dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary Dan Meningioma,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 5, no. 1, pp. 53–61, 2023, doi: 10.29303/jtika.v5i1.234.
[2] B. S. E. Dwi and D. R. I. M. Setiadi, “Deteksi Tumor Otak Dengan Metode Convolutional Neural Network,” J. Eksplora Inform., vol. 13, no. 2, pp. 188–197, 2024, doi: 10.30864/eksplora.v13i2.971.
[3] M. Kristian, S. Andryana, and A. Gunaryati, “Diagnosa Penyakit Tumor Otak Menggunakan Metode Waterfall Dan Algoritma Depth First Search,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 11–24, 2021, doi: 10.29100/jipi.v6i1.1840.
[4] T. A. (Tika) Mutiara and Q. N. (Qudsiah) Azizah, “Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine,” J. Khatulistiwa Inform., vol. 4, no. 1, pp. 45–50, 2022, [Online]. Available: https://www.neliti.com/publications/491268/
[5] R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” J. IT, vol. 11, no. 3, pp. 55–59, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
[6] A. Prayogi, A. C. Siregar, and R. W. S. Insani, “Deteksi Tumor Otak Menggunakan Metode Watershed dan Thresholding Pada Citra MRI,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 12, no. 3, p. 1761, 2023, doi: 10.35889/jutisi.v12i3.1688.
[7] T. Hidayat, D. M. Dama, and K. S. D. Irmanti, “Analisis Komparatif Metode Peningkatan Kualitas Citra Digital untuk Deteksi Area Tubercoluma pada Citra MRI,” J-Innovation, vol. 13, no. 2, pp. 72–77, 2024, doi: 10.55600/jipa.v13i2.289.
[8] P. Laksono, H. Harliana, and T. Prabowo, “Deteksi Tumor Otak Melalui Penerapan GLCM dan Naïve Bayes Classification,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 5, no. 1, pp. 41–48, 2023, doi: 10.46772/intech.v5i1.1286.
[9] A. J. Sinulingga, D. R. Manalu, and S. Manurung, “Klasifikasi Jenis Tumor Otak Berdasarkan Citra Glioma Menggunakan Metode Support Vector Machine,” Method. J. Tek. Inform. dan Sist. Inf., vol. 9, no. 2, pp. 23–25, 2023, doi: 10.46880/mtk.v9i2.1887.
[10] A. Azhar, B. Siswoyo, D. Pratama, K. Anam, and H. Susana, “Penerapan Algoritma Convolutional Neural Network (Cnn) Untuk Diagnosa Tumor Otak,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1797–1801, 2024, doi: 10.36040/jati.v8i2.8242.
[11] A. B. A. Aulia and Alamsyah, “Peningkatan Hiperparameter Framework Deep Learning VGG-16 untuk Pendeteksian Tumor Otak pada Teknologi MRI,” Indones. J. Math. Nat. Sci., vol. 47, no. 2, pp. 99–107, 2024, [Online]. Available: https://journal.unnes.ac.id/journals/JM/index
[12] M. L. Septipalan, M. S. Hibrizi, N. Latifah, R. Lina, and F. Bimantoro, “Klasifikasi Tumor Otak Menggunakan CNN Dengan Arsitektur Resnet50,” Semin. Nas. Teknol. Sains, vol. 3, no. 1, pp. 103–108, 2024, doi: 10.29407/stains.v3i1.4357.
[13] M. N. M. Hakim, A. B. Nugroho, and A. E. Minarno, “Prediksi Tumor Otak Menggunakan Metode Convolutional Neural Network,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 17, no. 1, p. 48, 2023, doi: 10.30872/jim.v17i1.5246.
[14] R. S. Passa, S. Nurmaini, and D. P. Rini, “Deteksi Tumor Otak Pada Magnetic Resonance Imaging Menggunakan Yolov7,” J. Ilm. Matrik, vol. 25, no. 2, pp. 116–121, 2023, doi: 10.33557/jurnalmatrik.v25i2.2404.
[15] O. A. Supriadi, E. Utami, and D. Ariatmanto, “Deteksi Tumor Otak Melalui Gambar MRI Berdasarkan Vision Transformers dengan Tensorflow dan Keras,” J. Inform. Univ. Pamulang, vol. 8, no. 3, pp. 385–392, 2023, doi: 10.32493/informatika.v8i3.32707.
[16] Y. I. Salsabila, H. Mustofa, and M. A. Ulinuha, “Klasifikasi Citra Tumor Otak Menggunakan Teknik Transfer Learning Pada Arsitektur Resnet-50,” J. Inf. Syst. Informatics Comput. Issue Period, vol. 9, no. 1, pp. 128–139, 2025, doi: 10.52362/jisicom.v9i1.1925.
[17] D. Husen, “Klasifikasi Citra MRI Tumor Otak Menggunakan Metode Convolutional Neural Network,” bit-Tech, vol. 7, no. 1, pp. 143–152, 2024, doi: 10.32877/bt.v7i1.1576.
[18] W. Wijiyanto, A. I. Pradana, S. Sopingi, and V. Atina, “Teknik K-Fold Cross Validation untuk Mengevaluasi Kinerja Mahasiswa,” J. Algoritm., vol. 21, no. 1, pp. 239–248, 2024, doi: 10.33364/algoritma/v.21-1.1618.
[19] Y. N. Fuadah, I. D. Ubaidullah, N. Ibrahim, F. F. Taliningsing, N. K. SY, and M. A. Pramuditho, “Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 3, p. 728, 2022, doi: 10.26760/elkomika.v10i3.728.
[20] H. Hafid, “Penerapan K-Fold Cross Validation untuk Menganalisis Kinerja Algoritma K-Nearest Neighbor pada Data Kasus Covid-19 di Indonesia,” J. Math., vol. 6, no. 2, pp. 161–168, 2023, [Online]. Available: http://www.ojs.unm.ac.id/jmathcos
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gilang Ekayanda, Majid Rahardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








