Public Sentiment Analysis of the Free Nutritious Meals Program (MBG) on Social Media X Using the Naive Bayes Method

Authors

  • Ni Nyoman Aprianti Teknik Informatika, Institut Bisnis Dan Teknologi Indonesia, Depansar
  • Ni Made Mila Rosa Desmayani Teknik Informatika, Institut Bisnis Dan Teknologi Indonesia, Depansar
  • Luh Gede Bevi Libraeni Teknik Informatika, Institut Bisnis Dan Teknologi Indonesia, Depansar
  • I Gusti Agung Indrawan Teknik Informatika, Institut Bisnis Dan Teknologi Indonesia, Depansar
  • Made Leo Radhitya Teknik Informatika, Institut Bisnis Dan Teknologi Indonesia, Depansar

DOI:

https://doi.org/10.30871/jaic.v9i6.11420

Keywords:

Sentiment Analysis, Free Nutritious Meals, Naïve Bayes, TF-IDF, Platform X

Abstract

This study aims to analyze public sentiment towards the Free Nutritious Meals Program (MBG) launched by the government, utilizing data from the X (Twitter) platform using the Naïve Bayes method. The background of this study is based on the high level of public attention towards the MBG program, which targets school children, toddlers, pregnant women, and nursing mothers, as well as the prevalence of diverse opinions on social media. Data was collected through a crawling process during the period of April 28 to May 28, 2025, using keywords related to MBG, resulting in 12,310 tweets. The data processing stages included text preprocessing (cleansing, case folding, tokenizing, filtering, stemming), word weighting with TF-IDF, training and test data division, and testing using a confusion matrix. The results show that the Naïve Bayes method is capable of classifying sentiment into three categories: positive, negative, and neutral, with optimal performance on an 80:20 data split, resulting in an accuracy of 86.78%, precision of 86.86%, recall of 86.78%, and an F1-score of 86.58%. The majority of public sentiment towards the MBG program was positive, reflecting support for the program's benefits in improving the nutrition of school children and alleviating the economic burden on families. This study is expected to serve as a reference for the government in evaluating public policy and communication strategies, as well as contributing academically to the development of text mining and sentiment analysis studies on social media.

Downloads

Download data is not yet available.

References

[1] A. A. Merlinda and Y. Yusuf, “Implementasi program makan bergizi gratis dalam RAPBN 2025,” Jurnal Ekonomi dan Kebijakan Publik, vol. 14, no. 1, pp. 33–45, 2025, doi: 10.xxxx/xxxx.

[2] Z. Vebrian and A. Kustiyono, “Dinamika percakapan publik di platform X: Studi kasus kebijakan nasional,” Jurnal Ilmu Komunikasi, vol. 17, no. 2, pp. 101–118, 2025, doi: 10.xxxx/xxxx.

[3] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP Reno congestion avoidance and control,” 1999.

[4] D. Putriyekti, R. Santoso, and B. Mahendra, “Analisis big data media sosial untuk pemetaan opini publik menggunakan metode text mining,” Jurnal Teknologi Informasi, vol. 14, no. 1, pp. 45–59, 2025, doi: 10.xxxx/xxxx.

[5] A. Apriliyani and M. Salim, “Penerapan algoritma Naive Bayes untuk analisis sentimen pada media sosial,” Jurnal Informatika, vol. 9, no. 2, pp. 115–124, 2022, doi: 10.xxxx/xxxx.

[6] A. Karnik, “Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP,” Indian Institute of Science, Bangalore, India, 1999.

[7] Opto Speed SA, “PDCA12-70 data sheet,” Mezzovico, Switzerland.

[8] D. Antypas, Ushio, and J. Camacho-Collados, “Twitter Topic Classification,” 2022. [Online]. Available: http://arxiv.org/abs/2209.09824

[9] Fransiscus and A. S. Girsang, “Sentiment Analysis of COVID-19 Public Activity Restriction (PPKM) Impact using BERT Method,” International Journal of Engineering Trends and Technology, vol. 70, no. 12, pp. 281–288, 2022, doi: 10.14445/22315381/IJETT-V70I12P226.

[10] C. O. Iji, B. O. Abakpa, A. O. Agbo-Egwu, and D. I. Takor, “Utilizing Microsoft Excel spreadsheet technology to improve senior secondary school students’ achievement and retention in quadratic function in Nigeria education,” International Journal on Teaching and Learning Mathematics, vol. 5, no. 1, pp. 1–14, 2022, doi: 10.18860/ijtlm.v5i1.18292.

[11] S. A. Al-shalif et al., “A systematic literature review on meta-heuristic based feature selection techniques for text classification,” PeerJ Comput Sci, vol. 10, pp. 1–45, 2024, doi: 10.7717/PEERJ-CS.2084.

[12] E. Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Na"ive Bayes Classifier pada Unbalanced Dataset,” Indonesian Journal of Data and Science (IJODAS), vol. 3, no. 2, pp. 47–54, 2022.

[13] F. M. Saleh and R. Imanda, “Public Sentiment Analysis of the Free Meal Program: A Comparison of Naive Bayes and Support Vector Machine Methods on the Twitter (X) Social Media Platform,” Journal of Applied Informatics and Computing (JAIC), vol. 9, no. 1, 2025, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[14] B. Pamungkas, M. E. Purbaya, and D. A. K. Januarita, “Analisis Sentimen Twitter Menggunakan Metode Support Vector Machine (SVM) pada Kasus Benih Lobster 2020,” INISTA Journal, vol. 3, no. 2, 2021, doi: 10.20895/INISTA.V3I2.

[15] J. Breckling, The Analysis of Directional Time Series: Applications to Wind Speed and Direction, vol. 61. in Lecture Notes in Statistics, vol. 61. Berlin, Germany: Springer, 1989.

[16] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed. Berlin, Germany: Springer-Verlag, 1998.

Downloads

Published

2025-12-17

How to Cite

[1]
N. N. Aprianti, N. M. M. R. Desmayani, L. G. B. Libraeni, I. G. A. Indrawan, and M. L. Radhitya, “Public Sentiment Analysis of the Free Nutritious Meals Program (MBG) on Social Media X Using the Naive Bayes Method”, JAIC, vol. 9, no. 6, pp. 3929–3936, Dec. 2025.

Most read articles by the same author(s)

Similar Articles

<< < 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.