Sentiment Analysis on Rupiah Depreciation Against USD Using XGBoost
DOI:
https://doi.org/10.30871/jaic.v9i5.10751Keywords:
Extreme Gradient Boosting, Exchange Rates, Sentiment Analysis, Social MediaAbstract
The depreciation of the rupiah against the United States dollar (USD) affects purchasing power and economic stability. Public responses are widely expressed through social media such as X and Instagram. This study aims to analyze public sentiment using the Extreme Gradient Boosting (XGBoost) algorithm. Data were collected through crawling and scraping, consisting of 13,443 X comments and 11,287 Instagram comments between January 2024 until April 2025. Preprocessing included emoji conversion, cleaning, case folding, normalization, tokenization, stopwords removal, and Stemming. Sentiment labeling was performed using the InSet Lexicon, TF-IDF weighting, and data splitting into 70:30, 80:20, and 90:10. The XGBoost model was trained with parameters: 100 estimators, learning rate 0.1, max depth 6, and subsample 0.8. Results showed accuracies of 74–76% on X data and stable 77% on Instagram. Model evaluation using precision, recall, and F1-score confirmed consistency: precision 0.76% – 0.84%, recall 0.86%–0.88%, and F1-score 0.82%–0.86%, reflecting a balance between accuracy and robustness in detecting sentiments. Sentiment distribution revealed that X is dominated by negative opinions (38%), while Instagram is more positive (41%). These findings confirm the effectiveness of XGBoost in sentiment classification and provide valuable insights for policymakers to design adaptive communication and monetary strategies based on digital public opinion.
Downloads
References
[1] Anindyntha, F. A., dan Fuddin, M. K. 2023. "How do macroeconomic variables and financial inclusion affect financial stability in Indonesia?". Jurnal Perspektif Pembiayaan dan Pembangunan Daerah, 11(5), 359–370. https://doi.org/10.22437/ppd.v11i5.25818.
[2] Assaidi, S. A., dan Amin, F. 2022. "Analisis Sentimen Evaluasi Pembelajaran Tatap Muka 100 Persen pada Pengguna Twitter menggunakan Metode Logistic Regression". Jurnal Pendidikan Tambusai, 6(2), 13217–13227.
[3] Atmajaya, D., Febrianti, A., dkk. 2023. "Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter". The Indonesian Journal of Computer Science, 12(4), 2173–2181. https://doi.org/10.33022/ijcs.v12i4.3341.
[4] Cahyadi, R., Rama Aditya Yunanda, R. S. P., dkk. 2024. "Analisis Faktor-Faktor Melemahnya Kurs Rupiah pada Era Digital", 5(2), 412–427.
[5] Hakim, Y. R., dan Aji, T. S. 2025. "Factors Affecting the Exchange Rate of the Indonesian Rupiah Against the United States Dollar: January 2013 - December 2023". Formosa Journal of Multidisciplinary Research, 4(5), 2043–2062. https://doi.org/10.55927/fjmr.v4i5.175.
[6] Khusni, K., dan Nurviliza2, O. 2025. "Navigating Economic Turbulence : Exchange Rate Volatility And Macroeconomic Resilience In Open". Jurnal Ilmiah Ilmu Pendidikan dan sosial, 14(1), 917–932.
[7] Larasati, F. R., Ratnawati, D. E., dkk. 2022. "Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest". Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(9), 4305–4313.
[8] Lestari, M. I., dan Anggraeni, D. 2021. "Analisis dampak sentimen masyarakat selama pandemi covid-19 terhadap kurs rupiah (Studi kasus pandemi covid-19 di Indonesia)". Jurnal EMBA, 9(1), 1–14.
[9] Muttaqin, M. N., dan Kharisudin, I. 2021. "Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor". UNNES Journal of Mathematics, 10(2), 22–27._diambil_dari_http://journal.unnes.ac.id/sju/index.php/ujm.
[10] Oktafia, O., dan Nugroho, R. S. A. 2024. "Comparison of Support Vector Machine(Svm), Xgboost and Random Forest for Sentiment Analysis of Bumble App User Comments". Proxies : Jurnal Informatika, 6(1), 32–46. https://doi.org/10.24167/proxies.v6i1.12453.
[11] Rininda, G., Hartami Santi, I., dkk. 2024. "Penerapan Svm Dalam Analisis Sentimen Pada Edlink Menggunakan Pengujian Confusion Matrix". JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3335–3342. https://doi.org/10.36040/jati.v7i5.7420.
[12] Samsul, E. M., Indriani, N., dkk. 2021. "Kebijakan Fiskal dan Moneter Indonesia serta Pengaruhnya terhadap Pasar Domestik di masa Pandemi COVID-19". Jurnal Accounting Information System (AIMS), 4(2), 46–57. https://doi.org/10.32627/aims.v4i2.228.
[13] Wasifah Hanim 2024. "Analisis Fluktuasi Nilai Tukar Rupiah Terhadap Dollar AS Ditinjau Dari Faktor Internal dan Eksternal", 9(1), 7–19.
[14] Wati, R., Ernawati, S., dkk. 2023. "Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH". Jurnal Manajemen Informatika (JAMIKA), 13(1), 84–93. https://doi.org/10.34010/jamika.v13i1.9424.
[15] Yulianti, S. E. H., Oni Soesanto, dkk. 2022. "Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit". Journal of Mathematics: Theory and Applications, 4(1), 21–26. https://doi.org/10.31605/jomta.v4i1.1792.
[16] Yulistiani, S. 2024. "Analisis Sentimen Terhadap Calon Presiden Indonesia 2024 dengan Metode Extreme Gradient Boosting ( XGBOOST )". Jurnal Informatika: Jurnal pengembangan IT, 9(3), 322–328. https://doi.org/10.30591/jpit.v9i3.6127.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ni Komang Purnama Indrayuni, Ni Made Mila Rosa Desmayani, I Dewa Ayu Agung Tantri Pramawati, I Made Subrata Sandhiyasa, Komang Kurniawan Widiartha

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








