Sentiment Analysis on Rupiah Depreciation Against USD Using XGBoost

Authors

  • Ni Komang Purnama Indrayuni Institut Bisnis dan Teknologi Indonesia Bali
  • Ni Made Mila Rosa Desmayani Institut Bisnis dan Teknologi Indonesia Bali
  • I Dewa Ayu Agung Tantri Pramawati Institut Bisnis dan Teknologi Indonesia Bali
  • I Made Subrata Sandhiyasa Institut Bisnis dan Teknologi Indonesia Bali
  • Komang Kurniawan Widiartha Institut Bisnis dan Teknologi Indonesia Bali

DOI:

https://doi.org/10.30871/jaic.v9i5.10751

Keywords:

Extreme Gradient Boosting, Exchange Rates, Sentiment Analysis, Social Media

Abstract

The depreciation of the rupiah against the United States dollar (USD) affects purchasing power and economic stability. Public responses are widely expressed through social media such as X and Instagram. This study aims to analyze public sentiment using the Extreme Gradient Boosting (XGBoost) algorithm. Data were collected through crawling and scraping, consisting of 13,443 X comments and 11,287 Instagram comments between January 2024 until April 2025. Preprocessing included emoji conversion, cleaning, case folding, normalization, tokenization, stopwords removal, and Stemming. Sentiment labeling was performed using the InSet Lexicon, TF-IDF weighting, and data splitting   into 70:30, 80:20, and 90:10. The XGBoost model was trained with parameters: 100 estimators, learning rate 0.1, max depth 6, and subsample 0.8. Results showed accuracies of 74–76% on X data and stable 77% on Instagram. Model evaluation using precision, recall, and F1-score confirmed consistency: precision 0.76% – 0.84%, recall 0.86%–0.88%, and F1-score 0.82%–0.86%, reflecting a balance between accuracy and robustness in detecting sentiments. Sentiment distribution revealed that X is dominated by negative opinions (38%), while Instagram is more positive (41%). These findings confirm the effectiveness of XGBoost in sentiment classification and provide valuable insights for policymakers to design adaptive communication and monetary strategies based on digital public opinion.

Downloads

Download data is not yet available.

References

[1] Anindyntha, F. A., dan Fuddin, M. K. 2023. "How do macroeconomic variables and financial inclusion affect financial stability in Indonesia?". Jurnal Perspektif Pembiayaan dan Pembangunan Daerah, 11(5), 359–370. https://doi.org/10.22437/ppd.v11i5.25818.

[2] Assaidi, S. A., dan Amin, F. 2022. "Analisis Sentimen Evaluasi Pembelajaran Tatap Muka 100 Persen pada Pengguna Twitter menggunakan Metode Logistic Regression". Jurnal Pendidikan Tambusai, 6(2), 13217–13227.

[3] Atmajaya, D., Febrianti, A., dkk. 2023. "Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter". The Indonesian Journal of Computer Science, 12(4), 2173–2181. https://doi.org/10.33022/ijcs.v12i4.3341.

[4] Cahyadi, R., Rama Aditya Yunanda, R. S. P., dkk. 2024. "Analisis Faktor-Faktor Melemahnya Kurs Rupiah pada Era Digital", 5(2), 412–427.

[5] Hakim, Y. R., dan Aji, T. S. 2025. "Factors Affecting the Exchange Rate of the Indonesian Rupiah Against the United States Dollar: January 2013 - December 2023". Formosa Journal of Multidisciplinary Research, 4(5), 2043–2062. https://doi.org/10.55927/fjmr.v4i5.175.

[6] Khusni, K., dan Nurviliza2, O. 2025. "Navigating Economic Turbulence : Exchange Rate Volatility And Macroeconomic Resilience In Open". Jurnal Ilmiah Ilmu Pendidikan dan sosial, 14(1), 917–932.

[7] Larasati, F. R., Ratnawati, D. E., dkk. 2022. "Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest". Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(9), 4305–4313.

[8] Lestari, M. I., dan Anggraeni, D. 2021. "Analisis dampak sentimen masyarakat selama pandemi covid-19 terhadap kurs rupiah (Studi kasus pandemi covid-19 di Indonesia)". Jurnal EMBA, 9(1), 1–14.

[9] Muttaqin, M. N., dan Kharisudin, I. 2021. "Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor". UNNES Journal of Mathematics, 10(2), 22–27._diambil_dari_http://journal.unnes.ac.id/sju/index.php/ujm.

[10] Oktafia, O., dan Nugroho, R. S. A. 2024. "Comparison of Support Vector Machine(Svm), Xgboost and Random Forest for Sentiment Analysis of Bumble App User Comments". Proxies : Jurnal Informatika, 6(1), 32–46. https://doi.org/10.24167/proxies.v6i1.12453.

[11] Rininda, G., Hartami Santi, I., dkk. 2024. "Penerapan Svm Dalam Analisis Sentimen Pada Edlink Menggunakan Pengujian Confusion Matrix". JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3335–3342. https://doi.org/10.36040/jati.v7i5.7420.

[12] Samsul, E. M., Indriani, N., dkk. 2021. "Kebijakan Fiskal dan Moneter Indonesia serta Pengaruhnya terhadap Pasar Domestik di masa Pandemi COVID-19". Jurnal Accounting Information System (AIMS), 4(2), 46–57. https://doi.org/10.32627/aims.v4i2.228.

[13] Wasifah Hanim 2024. "Analisis Fluktuasi Nilai Tukar Rupiah Terhadap Dollar AS Ditinjau Dari Faktor Internal dan Eksternal", 9(1), 7–19.

[14] Wati, R., Ernawati, S., dkk. 2023. "Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH". Jurnal Manajemen Informatika (JAMIKA), 13(1), 84–93. https://doi.org/10.34010/jamika.v13i1.9424.

[15] Yulianti, S. E. H., Oni Soesanto, dkk. 2022. "Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit". Journal of Mathematics: Theory and Applications, 4(1), 21–26. https://doi.org/10.31605/jomta.v4i1.1792.

[16] Yulistiani, S. 2024. "Analisis Sentimen Terhadap Calon Presiden Indonesia 2024 dengan Metode Extreme Gradient Boosting ( XGBOOST )". Jurnal Informatika: Jurnal pengembangan IT, 9(3), 322–328. https://doi.org/10.30591/jpit.v9i3.6127.

Downloads

Published

2025-10-14

How to Cite

[1]
N. K. P. Indrayuni, N. M. M. R. Desmayani, I. D. A. A. T. Pramawati, I. M. S. Sandhiyasa, and K. K. Widiartha, “Sentiment Analysis on Rupiah Depreciation Against USD Using XGBoost”, JAIC, vol. 9, no. 5, pp. 2521–2532, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.