Classification of Foot Wound Severity in Type 2 Diabetes Mellitus Patients Using MobileNetV2-Based Convolutional Neural Network
DOI:
https://doi.org/10.30871/jaic.v9i5.11015Keywords:
Convolutional Neural Network (CNN), MobileNetV2, Deep Learning (DL), Image Classification, Saverity of injuryAbstract
Diabetic Foot Ulcer (DFU) is a serious complication in Type 2 Diabetes Mellitus patients that may lead to amputation if not properly treated. This study employs the MobileNetV2 architecture based on Convolutional Neural Network (CNN) to classify DFU severity into two categories: severe and non-severe. The dataset consists of 1,000 images, divided into 70% training, 20% validation, and 10% testing. Data preprocessing was performed using normalization, augmentation (rotation, flipping, zooming), and dataset balancing to enhance model generalization. The model was trained for 10 epochs with a batch size of 32, learning rate of 0.001, and Adam optimizer. Experimental results show 98% accuracy on validation data with an average precision, recall, and F1-score of 0.98. On the testing stage, the model achieved 94% accuracy with an average precision, recall, and F1-score of 0.94. The confusion matrix also indicates strong performance in distinguishing both classes. This study demonstrates that MobileNetV2-based CNN with proper preprocessing and hyperparameter settings can serve as an effective supporting method for early DFU severity classification, thereby improving the speed and accuracy of medical decision-making.
Downloads
References
[1] M. D. Nugraha, Y. N. Ramdhani, and M. Utami, “Hubungan dukungan keluarga dengan tingkat distres pada lansia penderita diabetes melitus tipe 2 di wilayah kerja Puskesmas Kuningan Tahun 2023,” J. Nurs. Pract. Educ., vol. 4, no. 1, pp. 177–184, 2023, doi: 10.34305/jnpe.v4i1.936.
[2] A. S. Ariyadi and T. Septiawan, “Hubungan antara Tingkat Kecemasan dengan Kadar Gula Darah pada Penderita Diabetes Mellitus Tipe 2 di Wilayah Kerja Puskesmas Pasundan Samarinda Ulu,” JPP (Jurnal Kesehat. Poltekkes Palembang), vol. 19, no. 1, pp. 1–7, 2024, doi: 10.36086/jpp.v19i1.1903.
[3] E. Elisabeth, S. Suhartina, and W. Wienaldi, “Hubungan gaya hidup dengan kejadian diabetes mellitus Tipe 2 di Rumah Sakit Royal Prima Medan,” vol. 4, no. 02, pp. 222–231, 2024.
[4] Syokumawena, D. Mediarti, and Agustini Dea, “Manajemen Hiperglikemia Pada Pasien Diabetes Mellitus Tipe II Dengan Masalah Ketidakstabilan Kadar Glukosa Darah,” J. Aisyiyah Med., vol. 9, no. 1, pp. 68–82, 2024, [Online]. Available: https://jurnal.stikes-aisyiyah-palembang.ac.id/index.php/JAM/article/view/1163/885
[5] I. Sulistiani and D. Nurdiana, “Jurnal Keperawatan,” vol. 16, pp. 851–856, 2024.
[6] I. Zalianty, F. Kedokteran, and U. Malikussaleh, “Karakteristik Ulkus Diabetikum Di Rsud Cut Meutia Kabupaten Aceh Utara” Skripsi 2024.
[7] C. Lei, Y. Jiang, K. Xu, S. Liu, H. Cao, and C. Wang, “Convolutional Neural Network Models for Visual Classification of Pressure Ulcer Stages : Cross- Sectional Study,” JMIR Med. INFORMATICS, vol. 13, pp. 1–14, 2025, doi: 10.2196/62774.
[8] O. Yuliardi, I. Zufria, and M. D. Irawan, “Sistem Pakar Mendiagnosis Nutrisi Tanaman Hidroponik Menggunakan Metode Dempster Shafer,” J. Sist. Inf. TGD, vol. 2, pp. 425–432, 2023.
[9] S. Pariyasto, V. A. Warongan, S. Tinggi, I. Kesehatan, and M. Sejati, “Optimalisasi klasifikasi citra medis menggunakan cnn dan adam optimizer dengan paramater minimum,” J. Sci. Soc. Res., vol. 4307, no. 1, pp. 691–701, 2025.
[10] F. Styono, B. S. Riza, and M. Furqon, “1. pendahuluan,” Proceeding Int. Conf. Sci. Technol. UISU, pp. 243–248, 2024.
[11] R. R. Karim, A. Herlangga, U. S. Karawang, T. Timur, and J. Barat, “Jawa Barat Menggunakan Convolutional Neural Network ( CNN ) Dengan Metode,” vol. 12, no. 2, 2024.
[12] Sriani, Armansyah, and A. Nabila, “Deep Learning Mengidentifikasi Umur Manusia Menggunakan Convolutional Neural Network ( CNN ),” J. Inform. dan Tek. Elektro, vol. 12, no. 3, pp. 1836–1843, 2024.
[13] I. Fathurrahman, Mahpuz, M. Djamaluddin, L. K. Wijaya, and I. Wahidah, “Pengembangan Model Convolutional Neural Network (CNN) untuk Klasifikasi Penyakit Kulit Berbasis Citra Digital,” J. Inform. dan Teknol., vol. 8, no. 1, pp. 298–308, 2025.
[14] E. M. Dewi, “Metode Algoritma Convolutional Neural Network Dengan Arsitektur Mobilenet V2” Skripsi 2025.
[15] M. Febriady, “Klasifikasi Daun Teh Siap Panen Menggunakan Cnn Dengan Arsitektur Mobilenetv2 Fakultas Teknik Universitas Medan Area Medan CNN Dengan Arsitektur Mobilenetv2,” Skripsi 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurul Fitriah, Sriani Sriani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








