Personal Protective Equipment Completeness Monitoring System Using YOLO-Based Computer Vision

Authors

  • Baasith Khoiruddin Akmal Sistem Informasi, Universitas Duta Bangsa Surakarta
  • Wiji Lestari Sistem Informasi, Universitas Duta Bangsa Surakarta
  • Afu Ichsan Pradana Sistem Informasi, Universitas Duta Bangsa Surakarta

DOI:

https://doi.org/10.30871/jaic.v9i4.10172

Keywords:

Computer Vision, Object Detection, Personal Protective Equipment (PPE), Workplace Safety, YOLOv11s, YOLOv8s

Abstract

Workplace safety in the construction sector remains a critical concern, primarily due to low compliance with Personal Protective Equipment (PPE) standards. To address this, this study develops and evaluates a real-time PPE monitoring system, conducting a comparative analysis of two state-of-the-art object detection models: YOLOv8s and YOLOv11s. The system is designed to detect three essential PPE items: helmets, masks, and vests, and both models were trained on a custom dataset of 9,202 augmented images over 200 epochs. The final evaluation on an unseen test set revealed highly competitive performance. While YOLOv8s achieved a marginally higher [email protected] (90.8%), YOLOv11s demonstrated superior precision (92.0%) and better performance on the stricter [email protected]:0.95 metric (54.4%). Based on this nuanced trade-off and its significantly higher computational efficiency (15% fewer parameters), YOLOv11s was selected as the optimal model. The chosen model achieved a real-time inference speed of approximately 112 FPS. A functional web-based prototype was developed using Flask to demonstrate the system's practical application. These findings confirm that YOLOv11s offers a more balanced and efficient solution for automating PPE compliance monitoring and highlight that a holistic evaluation beyond a single metric is crucial for deploying robust computer vision systems in real-world safety applications.

Downloads

Download data is not yet available.

References

[1] International Labour Organization, “Call for safer and healthier working environments,” Nov. 2023. [Online]. Available: https://www.ilo.org/publications/call-safer-and-healthier-working-environments

[2] Kementerian Ketenagakerjaan Republik Indonesia, “Kasus Kecelakaan Kerja Tahun 2024,” Dec. 2024. Accessed: Jul. 19, 2025. [Online]. Available: https://satudata.kemnaker.go.id/data/kumpulan-data/2447

[3] I. Mopio, R. Maulana, O. Heicqal Ardian, and S. Novita Sari, “Implementasi Keselamatan dan Kesehatan Kerja ( K3) Pada Proyek Pembangunan Mall Pelayanan Publik (MPP) Dengan Target Zero Accident,” Jurnal Ilmiah Teknik Unida, vol. 4, no. 1, 2023.

[4] R. O. Bramistra, “Analisis Penerapan Keselamatan dan Kesehatan Kerja (K3) Pada Proyek Gedung Bertingkat (Studi Kasus Penggunaan Alat Pelindung Diri Pada Paket Pembangunan Rumah Susun Pondok Pesantren Provinsi Jawa Tengah II TA. 2022),” Universitas Islam Indonesia, 2024.

[5] I. Sartina and D. Purnamawati, “Evaluasi Penggunaan APD dalam Konteks Kesehatan dan Keselamatan Kerja di Industri Kontruksi,” in Prosiding Seminar Nasional Kesehatan Masyarakat Universitas Muhammadiyah Surakarta, 2024, pp. 131–144.

[6] M. A. D. Goma, S. Sarman, H. Akbar, and F. Rumaf, “Hubungan Penerapan Standar Operasional Prosedur dan Penggunaan Alat Pelindung Diri Dengan Kecelakaan Kerja Pada Karyawan PT. X Kabupaten Bolang Mongondow Utara,” Environmental Occupational Health And Safety Journal, vol. 4, no. 2, pp. 35–42, 2024.

[7] W. Fang et al., “Computer vision applications in construction safety assurance,” Autom Constr, vol. 110, Feb. 2020, doi: 10.1016/j.autcon.2019.103013.

[8] ILOSTAT, “Occupational Safety and Health Statistics (OSH) Database,” 2025. [Online]. Available: https://ilostat.ilo.org/topics/safety-and-health-at-work/

[9] J. Li et al., “A Review of Computer Vision-Based Monitoring Approaches for Construction Workers’ Work-Related Behaviors,” IEEE Access, vol. 12, pp. 7134–7155, 2024, doi: 10.1109/ACCESS.2024.3350773.

[10] A. M. Vukicevic, M. Petrovic, P. Milosevic, A. Peulic, K. Jovanovic, and A. Novakovic, “A systematic review of computer vision-based personal protective equipment compliance in industry practice: advancements, challenges and future directions,” Artif Intell Rev, vol. 57, no. 12, Dec. 2024, doi: 10.1007/s10462-024-10978-x.

[11] S. Arshad, O. Akinade, S. Bello, and M. Bilal, “Computer vision and IoT research landscape for health and safety management on construction sites,” Journal of Building Engineering, vol. 76, Oct. 2023, doi: 10.1016/j.jobe.2023.107049.

[12] M. Alfin Taufiqurrochman, H. Februariyanti, and J. Homepage, “Rancang Bangun Aplikasi Deteksi Alat Pelindung Diri (APD) untuk Pekerja Proyek dengan Menggunakan Algoritma Yolov5 Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi),” Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 2, p. 2024, 2024, doi: 10.35870/jti.

[13] K. Nisa, F. Nur Fajri, and Z. Arifin, “Implementation of Personal Protective Equipment Detection Using Django and Yolo Web at Paiton Steam Power Plant (PLTU),” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 2, pp. 333–347, 2023, doi: 10.26555/jiteki.v9i2.26131.

[14] Ultralytics, “Ultralytics YOLOv11 Documentation,” ultralytics. Accessed: Nov. 21, 2024. [Online]. Available: https://docs.ultralytics.com/

[15] Ultralytics, “YOLO Model Comparison: YOLOv11 vs Previous.” [Online]. Available: https://www.ultralytics.com/blog/comparing-ultralytics-yolo11-vs-previous-yolo-models

[16] Roboflow, “How to Train a YOLOv11 Object Detection Model on a Custom Dataset.” [Online]. Available: https://blog.roboflow.com/yolov11-how-to-train-custom-data

[17] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on Performance Metrics for Object-Detection Algorithms,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), 2020, pp. 237–242. doi: 10.1109/IWSSIP48289.2020.9145130.

[18] I.-H. and M. L. H.-Y. Wang Chien-Yao and Yeh, “YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information,” in Computer Vision – ECCV 2024, E. and R. S. and R. O. and S. T. and V. G. Leonardis Aleš and Ricci, Ed., Cham: Springer Nature Switzerland, 2025, pp. 1–21.

[19] A. Sharma, V. Kumar, and L. Longchamps, “Comparative performance of YOLOv8, YOLOv9, YOLOv10, YOLOv11 and Faster R-CNN models for detection of multiple weed species,” Smart Agricultural Technology, vol. 9, Dec. 2024, doi: 10.1016/j.atech.2024.100648.

[20] A. M. Vukicevic, M. Petrovic, P. Milosevic, A. Peulic, K. Jovanovic, and A. Novakovic, “A systematic review of computer vision-based personal protective equipment compliance in industry practice: advancements, challenges and future directions,” Artif Intell Rev, vol. 57, no. 12, Dec. 2024, doi: 10.1007/s10462-024-10978-x.

Downloads

Published

2025-08-07

How to Cite

[1]
B. K. Akmal, W. Lestari, and A. I. Pradana, “Personal Protective Equipment Completeness Monitoring System Using YOLO-Based Computer Vision”, JAIC, vol. 9, no. 4, pp. 1639–1647, Aug. 2025.

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.