Implementasi Algoritma PID untuk Pengontrolan Suhu Pada Mesin Pengering Cabai

Penulis

  • Handri Toar Jurusan Teknik Elektro, Prodi Teknologi Rekayasa Pembangkit Energi, Politeknik Negeri Batam, Batam, Indonesia https://orcid.org/0000-0003-3431-3040
  • Wasdoni Alfi Jurusan Teknik Elektro, Prodi Teknologi Rekayasa Elektronika, Politeknik Negeri Batam, Batam, Indonesia
  • Illa Aryeni Jurusan Teknik Elektro, Prodi Teknologi Rekayasa Elektronika, Politeknik Negeri Batam, Batam, Indonesia
  • Nanta Fakih Prebianto Jurusan Teknik Elektro, Prodi Teknologi Rekayasa Pembangkit Energi, Politeknik Negeri Batam, Batam, Indonesia
  • Hana Mutialif Maulidiah Jurusan Teknik Elektro, Prodi Teknik Elektronika Manufaktur, Politeknik Negeri Batam, Batam, Indonesia
  • Muammar Khadapi Arif Nasution Jurusan Teknik Elektro, Prodi Teknologi Rekayasa Elektronika, Politeknik Negeri Batam, Batam, Indonesia
  • Micko Tomas Jurusan Teknik Elektro, Fakultas Teknik, Universitas Andalas, Padang, Indonesia

DOI:

https://doi.org/10.30871/jaee.v9i1.9314

Kata Kunci:

kestabilan suhu, kontrol PID, pengeringan cabai, Ziegler-Nichols

Abstrak

Penelitian ini mengimplementasikan kontrol PID pada mesin pengering cabai untuk mempertahankan stabilitas suhu selama proses pengeringan, dengan tujuan memperpanjang umur simpan cabai dan menjaga kualitasnya. Pengaturan suhu optimal dicapai melalui mekanisme tuning kontrol PID yang memanfaatkan metode Ziegler - Nichols. Proses tuning ini mengatur parameter optimal Kp, Ki, dan Kd yang dapat menghasilkan respon sistem yang stabil pada suhu setpoint. Mesin Pengering terdiri dari komponen utama, termasuk sensor suhu DHT22, pemanas, dan mikrokontroler ESP32. Sistem ini terintegrasi dengan aplikasi Home Assistant untuk memungkinkan pemantauan dan pengontrolan jarak jauh. Pengujian dilaksanakan pada tiga setpoint suhu yaitu 50°C, 60°C, dan 70°C. Hasil pengujian menunjukkan bahwa suhu 60°C menghasilkan keseimbangan optimal antara kecepatan pengeringan dan kestabilan kelembaban. Implementasi pengendalian PID berhasil menjaga suhu mendekati setpoint dengan steady-state error sebesar 0,98%. Selain itu, sistem ini juga menghasilkan overshoot yang minimal dan waktu pencapaian suhu stabil (settling time) yang optimal. Proses pengeringan menghasilkan penurunan kadar air yang signifikan, dengan berat awal 1 kg berkurang menjadi sekitar 261gram setelah pengeringan selesai. Implementasi tuning PID pada mesin pengering cabai menunjukkan efektivitas dalam meningkatkan kestabilan suhu dan kualitas akhir produk cabai kering, serta memberikan solusi yang potensial bagi petani dalam mengatasi kendala pengeringan cabai secara konvensional.

Unduhan

Data unduhan belum tersedia.

Referensi

[1] A. Kumar, K. U. Singh, M. K. Singh, A. K. S. Kushwaha, A. Kumar, and S. Mahato, “Design and Fabrication of Solar Dryer System for Food Preservation of Vegetables or Fruit,” J. Food Qual., vol. 2022, 2022, doi: 10.1155/2022/6564933.

[2] N. Sahar et al., “Effects of drying surfaces and physical attributes on the development of Aflatoxins (AFs) in red chilies,” J. Food Process. Preserv., vol. 46, no. 2, 2022, doi: 10.1111/jfpp.16173.

[3] C. A. Afgani and A. Ariskanopitasari, “Sosialisasi Penanganan Pascapanen Buah Cabai Merah Di Sernu Labu Badas Kabupaten Sumbawa,” J. Agro Dedik. Masy. (JADM …, vol. 5, no. 1, pp. 1–6, 2024, [Online]. Available: http://112.78.38.8/index.php/JADM/article/view/23437

[4] L. G. Hakim, A. Sofwan, and A. Triwiyatno, “Perancangan Sistem Rekayasa Lingkungan Smart Greenhouse Menggunakan Fuzzy Logic Controller Pada Tanaman Cabai,” Transient J. Ilm. Tek. Elektro, vol. 9, no. 1, pp. 46–55, 2020, doi: 10.14710/transient.v9i1.46-55.

[5] G. E. S. Batiha et al., “Biological properties, bioactive constituents, and pharmacokinetics of some capsicum spp. And capsaicinoids,” Int. J. Mol. Sci., vol. 21, no. 15, pp. 1–35, 2020, doi: 10.3390/ijms21155179.

[6] C. Gu et al., “Effects of catalytic infrared drying in combination with hot air drying and freeze drying on the drying characteristics and product quality of chives,” Lwt, vol. 161, no. September 2021, p. 113363, 2022, doi: 10.1016/j.lwt.2022.113363.

[7] N. K. Mahanti et al., “Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments,” Futur. Foods, vol. 3, no. March, p. 100024, 2021, doi: 10.1016/j.fufo.2021.100024.

[8] V. C. Guntara, “Rancang Bangun Alat Penggiling Dan Pengering Cabai Menggunakan Atmega 328,” J. Energy Electr. Eng., vol. 3, no. 1, pp. 39–45, 2021, doi: 10.37058/jeee.v3i1.3647.

[9] P. Zhang, A. Daraz, S. A. Malik, C. Sun, A. Basit, and G. Zhang, “Multi-resolution based PID controller for frequency regulation of a hybrid power system with multiple interconnected systems,” Front. Energy Res., vol. 10, no. February, pp. 1–16, 2023, doi: 10.3389/fenrg.2022.1109063.

[10] R. L. Sianturi, W. S. Nababan, and S. Sihombing, “Evaluasi Kinerja Mesin Pengering Surya Type Kolektor Pelat Datar Sebagai Pengering Cabai yang Efektif,” vol. 6, no. 2, pp. 20–29, 2025.

[11] A. Kurniawan and I. Ita, “Analisis Faktor-Faktor Permintaan Cabai Merah Kering Impor oleh Pedagang Bumbu di Pasar Perumnas Kota Palembang Sumatera Selatan,” Mbia, vol. 19, no. 2, pp. 121–131, 2020, doi: 10.33557/mbia.v19i2.971.

[12] A. Anwari and M. Syaefullah, “Rancang Bangun Alat Pengering Cabai Merah Menggunakan Sistem Rotary Dryer Berbasis Mikrokontroler,” vol. 3, no. 1, 2024.

[13] M. Yamin et al., “Studi Awal Kinerja Alat Pengering Berbasis Panas Bohlam dengan Komoditi Cabe Keriting (Capsicum Annum L.),” vol. 20, no. 01, 2024.

[14] P. Putu et al., “Pembuatan Alat Pengering Cabai Dengan Sistem Efek Rumah Kaca Berbasis Panel Surya,” Vol. 6, No. 3, Pp. 90–104, 2023.

[15] D. Santoso and A. Waris, “Uji Kinerja Sistem Kontrol Untuk Pengendalian Suhu Pada Alat Pengering Biji-Bijian Berbasis Fuzzy Logic,” J. Ilm. Rekayasa Pertan. dan Biosist., vol. 8, no. 1, pp. 33–39, 2020, doi: 10.29303/jrpb.v8i1.161.

[16] M. A. Prasetyo, N. Tamami, and A. Wijayanto, “Prototipe Alat Pengering Padi dan Jagung Tipe Putar Secara Otomatis Menggunakan Metode PID Berbasis Internet of Things,” J. Fokus Elektroda, vol. 09, no. 2, pp. 63–72, 2024, [Online]. Available: https://elektroda.uho.ac.id/

[17] R. F. Fadarina, Indah Purnamasari, “Efisiensi Mesin Pengering Beku Vakum pada Pengeringan Cabai Merah (Capsicum annuum L.),” J. Kinet., vol. 11, no. 01, pp. 1–8, 2020, [Online]. Available: https://jurnal.polsri.ac.id/index.php/kimia/index

[18] A. N. Aliansyah, “Rancang Bangun Oven Pengering Cabai dilengkapi Kontrol Suhu Otomatis,” Enthalpy J. Ilm. Mhs. Tek. Mesin, vol. 8, no. 2, p. 50, 2023, doi: 10.55679/enthalpy.v8i2.36498.

Diterbitkan

2025-06-28 — Diperbaharui pada 2025-06-28

Versi

Cara Mengutip

Toar, H., Wasdoni Alfi, Illa Aryeni, Nanta Fakih Prebianto, Hana Mutialif Maulidiah, Muammar Khadapi Arif Nasution, & Micko Tomas. (2025). Implementasi Algoritma PID untuk Pengontrolan Suhu Pada Mesin Pengering Cabai. Journal of Applied Electrical Engineering, 9(1), 72–81. https://doi.org/10.30871/jaee.v9i1.9314

Terbitan

Bagian

Manuscripts

Artikel paling banyak dibaca berdasarkan penulis yang sama

Artikel Serupa

1 2 3 4 > >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.