Browser-Based Detection of Harmful Content with Deep Learning Model

Authors

  • Ni Made Deni Sikiandani Teknologi Informasi, Universitas Udayana
  • I Made Agus Dwi Suarjaya Teknologi Informasi, Universitas Udayana
  • Yohanes Perdana Putra Teknologi Informasi, Universitas Udayana

DOI:

https://doi.org/10.30871/jaic.v9i4.9804

Keywords:

Harmful Content, Deep Learning, BiLSTM, Whisper Automatic Speech Recognition, Browser Extension

Abstract

This study presents a browser extension that detects harmful content on both web pages and TikTok using a deep learning-based approach. The core model employs a Bidirectional Long Short-Term Memory (BiLSTM) network for multi-label classification, targeting six categories: Toxic, Severe Toxic, Obscene, Threat, Insult, and Identity Hate. The dataset combines 13,057 labeled samples from a public Kaggle dataset (2021) and 2,884 manually labeled tweets scraped from Twitter (X) between October–November 2024. Three feature extraction methods were tested: learned embeddings, FastText, and Word2Vec. The BiLSTM model architecture includes one embedding layer, a 32-unit bidirectional LSTM, three dense layers (128,256,128) using ReLU activation, and a six-unit sigmoid output layer. The model was trained using the Adam optimizer and binary cross-entropy loss, with early stopping applied after five stagnant validation checks across a maximum of 200 epochs. While the FastText-based model showed the best performance, the final deployed model used learned embeddings in Scenario 1 due to its smaller size (1.6M parameters) and near-optimal performance (Recall: 0.9786; Hamming Loss: 0.0052). The extension also integrates Whisper ASR for detecting harmful speech in video-based platforms like TikTok and supports five customizable censorship filters. User evaluation via Customer Satisfaction Score (CSAT) indicated strong acceptance, with 95.45% rating the user experience as Excellent, 84.09% confirming detection relevance, and 79.55% rating the system performance as Good. This highlights the extension’s effectiveness in promoting safer digital interaction across text and audiovisual content.

Downloads

Download data is not yet available.

References

[1] S. Kemp, “Digital 2024: Indonesia.” Accessed: Jun. 12, 2025. [Online]. Available: https://datareportal.com/reports/digital-2024-indonesia

[2] N. Rahman, “Social Media, Freedom of Expression and Right to Privacy: An Analysis,” SSRN Electron. J., 2023, doi: 10.2139/ssrn.4637111.

[3] UNICEF, “What is harmful content?,” UNICEF Australia. Accessed: Jun. 12, 2025. [Online]. Available: https://www.unicef.org.au/parent-teacher-resources/online-safety/harmful-content?srsltid=AfmBOoqNoyHkIR5V8Xwm5EiFpdX3Hxw0J3O39c-agBUN2g5Oe3LDwoLf

[4] C. Febriyani, “Bahaya Ujaran Kebencian di Dunia Maya Diatur Sebagai Tindak Pidana di UU ITE,” Industry.co.id. Accessed: Jun. 12, 2025. [Online]. Available: https://www.industry.co.id/read/93219/bahaya-ujarankebencian-di-dunia-maya-diatur-sebagai-tindak-pidana-di-uuite

[5] Pusiknas Bareskrim Polri, “Lima Hari, Belasan Polda Tangani Kasus Pencemaran Nama Baik.” Accessed: Jun. 12, 2025. [Online]. Available: https://pusiknas.polri.go.id/detail_artikel/lima_hari,_belasan_polda_tangani_kasus_pencemaran_nama_baik

[6] R. P. Utami, “Web Page adalah Bagian Terpenting Website, Benarkah? | Bamaha Digital,” https://bamahadigital.com/. Accessed: Jun. 12, 2025. [Online]. Available: https://bamahadigital.com/web-page-adalah/

[7] M. Rosyida, “5++ Perbedaan Web Page dan Web Site yang Perlu Kamu Tahu.” Accessed: Jun. 12, 2025. [Online]. Available: https://www.domainesia.com/berita/perbedaan-web-page-dan-web-site/

[8] S. Kemp, “TikTok Users, Stats, Data, Trends, For 2025,” DataReportal – Global Digital Insights. Accessed: Jun. 12, 2025. [Online]. Available: https://datareportal.com/essential-tiktok-stats

[9] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3, pp. 685–695, Apr. 2021, doi: 10.1007/s12525-021-00475-2.

[10] A. Raup, W. Ridwan, Y. Khoeriyah, S. Supiana, and Q. Zaqiah, “Deep Learning dan Penerapannya dalam Pembelajaran,” JIIP - J. Ilm. Ilmu Pendidik., vol. 5, pp. 3258–3267, Sep. 2022, doi: 10.54371/jiip.v5i9.805.

[11] A. Perwira Joan Dwitama, D. Fudholi, and S. Hidayat, “Indonesian Hate Speech Detection Using Bidirectional Long Short-Term Memory (Bi-LSTM),” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 7, pp. 302–309, Mar. 2023, doi: 10.29207/resti.v7i2.4642.

[12] M. Neog and N. Baruah, “A hybrid deep learning approach for Assamese toxic comment detection in social media,” Procedia Comput. Sci., vol. 235, pp. 2297–2306, 2024, doi: https://doi.org/10.1016/j.procs.2024.04.218.

[13] S. Kaur, S. Singh, and S. Kaushal, “Deep learning-based approaches for abusive content detection and classification for multi-class online user-generated data,” Int. J. Cogn. Comput. Eng., vol. 5, pp. 104–122, 2024, doi: https://doi.org/10.1016/j.ijcce.2024.02.002.

[14] E. Zahra, Y. Sibaroni, and S. Prasetyowati, “Classification of Multi-Label of Hate Speech on Twitter Indonesia using LSTM and BiLSTM Method,” JINAV J. Inf. Vis., vol. 4, pp. 170–178, Jul. 2023, doi: 10.35877/454RI.jinav1864.

[15] J. An, W. Lee, Y. Jeon, J. Ok, Y. Kim, and G. Lee, “An Investigation into Explainable Audio Hate Speech Detection,” Jan. 2024, pp. 533–543. doi: 10.18653/v1/2024.sigdial-1.45.

[16] Rivaldo, “aldon_data_unprocessed.” Accessed: Jun. 13, 2025. [Online]. Available: https://www.kaggle.com/datasets/aldonistan/aldon-data-unprocessed

[17] I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019,” Eksplora Inform., vol. 9, pp. 1–10, Sep. 2019, doi: 10.30864/eksplora.v9i1.237.

[18] I. N. Bayu, I. M. A. D. Suarjaya, and P. Buana, “Classification of Indonesian Population’s Level Happiness on Twitter Data Using N-Gram, Naïve Bayes, and Big Data Technology,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, p. 1944, Oct. 2022, doi: 10.18517/ijaseit.12.5.14387.

[19] R. I. Pristiyanti, M. A. Fauzi, and L. Muflikhah, “Sentiment Analysis Peringkasan Review Film Menggunakan Metode Information Gain dan K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 2, no. 3, pp. 1179–1186, 2017.

[20] M. Susanty and S. Sukardi, “Perbandingan Pre-trained Word Embedding dan Embedding Layer untuk Named-Entity Recognition Bahasa Indonesia,” Petir, vol. 14, pp. 247–257, Sep. 2021, doi: 10.33322/petir.v14i2.1164.

[21] M. Suri, “A Dummy’s Guide to Word2Vec. Essentials of Word2Vec.” Accessed: Jun. 12, 2025. [Online]. Available: https://medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673

[22] T. Mikolov, K. Chen, G. s Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Proc. Workshop ICLR, vol. 2013, Jan. 2013.

[23] M. S. Jahan and M. Oussalah, “A systematic review of Hate Speech automatic detection using Natural Language Processing,” May 2021, doi: 10.48550/arXiv.2106.00742.

[24] A. Girsang, “Word Embedding dengan FastText.” Accessed: Jun. 12, 2025. [Online]. Available: https://mti.binus.ac.id/2021/12/31/word-embedding-dengan-fasttext/

[25] S. Cornegruta, R. Bakewell, S. Withey, and G. Montana, “Modelling Radiological Language with Bidirectional Long Short-Term Memory Networks,” Sep. 2016, doi: 10.48550/arXiv.1609.08409.

[26] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition.,” Jan. 2005, pp. 799–804.

[27] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time series classification,” J. Syst. Eng. Electron., vol. 28, pp. 162–169, Feb. 2017, doi: 10.21629/JSEE.2017.01.18.

[28] A. Vaswani et al., “Attention Is All You Need,” Jun. 2017, doi: 10.48550/arXiv.1706.03762.

[29] A. Radford, J. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust Speech Recognition via Large-Scale Weak Supervision,” Dec. 2022, doi: 10.48550/arXiv.2212.04356.

[30] S. Lee, “Hamming Loss Explained: Key Insights for Multi-label Learning.” Accessed: Jul. 03, 2025. [Online]. Available: https://www.numberanalytics.com/blog/hamming-loss-explained-key-insights

Downloads

Published

2025-08-08

How to Cite

[1]
N. M. D. Sikiandani, I. M. A. Dwi Suarjaya, and Y. Perdana Putra, “Browser-Based Detection of Harmful Content with Deep Learning Model”, JAIC, vol. 9, no. 4, pp. 1800–1811, Aug. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.