Browser-Based Detection of Harmful Content with Deep Learning Model
DOI:
https://doi.org/10.30871/jaic.v9i4.9804Keywords:
Harmful Content, Deep Learning, BiLSTM, Whisper Automatic Speech Recognition, Browser ExtensionAbstract
This study presents a browser extension that detects harmful content on both web pages and TikTok using a deep learning-based approach. The core model employs a Bidirectional Long Short-Term Memory (BiLSTM) network for multi-label classification, targeting six categories: Toxic, Severe Toxic, Obscene, Threat, Insult, and Identity Hate. The dataset combines 13,057 labeled samples from a public Kaggle dataset (2021) and 2,884 manually labeled tweets scraped from Twitter (X) between October–November 2024. Three feature extraction methods were tested: learned embeddings, FastText, and Word2Vec. The BiLSTM model architecture includes one embedding layer, a 32-unit bidirectional LSTM, three dense layers (128,256,128) using ReLU activation, and a six-unit sigmoid output layer. The model was trained using the Adam optimizer and binary cross-entropy loss, with early stopping applied after five stagnant validation checks across a maximum of 200 epochs. While the FastText-based model showed the best performance, the final deployed model used learned embeddings in Scenario 1 due to its smaller size (1.6M parameters) and near-optimal performance (Recall: 0.9786; Hamming Loss: 0.0052). The extension also integrates Whisper ASR for detecting harmful speech in video-based platforms like TikTok and supports five customizable censorship filters. User evaluation via Customer Satisfaction Score (CSAT) indicated strong acceptance, with 95.45% rating the user experience as Excellent, 84.09% confirming detection relevance, and 79.55% rating the system performance as Good. This highlights the extension’s effectiveness in promoting safer digital interaction across text and audiovisual content.
Downloads
References
[1] S. Kemp, “Digital 2024: Indonesia.” Accessed: Jun. 12, 2025. [Online]. Available: https://datareportal.com/reports/digital-2024-indonesia
[2] N. Rahman, “Social Media, Freedom of Expression and Right to Privacy: An Analysis,” SSRN Electron. J., 2023, doi: 10.2139/ssrn.4637111.
[3] UNICEF, “What is harmful content?,” UNICEF Australia. Accessed: Jun. 12, 2025. [Online]. Available: https://www.unicef.org.au/parent-teacher-resources/online-safety/harmful-content?srsltid=AfmBOoqNoyHkIR5V8Xwm5EiFpdX3Hxw0J3O39c-agBUN2g5Oe3LDwoLf
[4] C. Febriyani, “Bahaya Ujaran Kebencian di Dunia Maya Diatur Sebagai Tindak Pidana di UU ITE,” Industry.co.id. Accessed: Jun. 12, 2025. [Online]. Available: https://www.industry.co.id/read/93219/bahaya-ujarankebencian-di-dunia-maya-diatur-sebagai-tindak-pidana-di-uuite
[5] Pusiknas Bareskrim Polri, “Lima Hari, Belasan Polda Tangani Kasus Pencemaran Nama Baik.” Accessed: Jun. 12, 2025. [Online]. Available: https://pusiknas.polri.go.id/detail_artikel/lima_hari,_belasan_polda_tangani_kasus_pencemaran_nama_baik
[6] R. P. Utami, “Web Page adalah Bagian Terpenting Website, Benarkah? | Bamaha Digital,” https://bamahadigital.com/. Accessed: Jun. 12, 2025. [Online]. Available: https://bamahadigital.com/web-page-adalah/
[7] M. Rosyida, “5++ Perbedaan Web Page dan Web Site yang Perlu Kamu Tahu.” Accessed: Jun. 12, 2025. [Online]. Available: https://www.domainesia.com/berita/perbedaan-web-page-dan-web-site/
[8] S. Kemp, “TikTok Users, Stats, Data, Trends, For 2025,” DataReportal – Global Digital Insights. Accessed: Jun. 12, 2025. [Online]. Available: https://datareportal.com/essential-tiktok-stats
[9] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3, pp. 685–695, Apr. 2021, doi: 10.1007/s12525-021-00475-2.
[10] A. Raup, W. Ridwan, Y. Khoeriyah, S. Supiana, and Q. Zaqiah, “Deep Learning dan Penerapannya dalam Pembelajaran,” JIIP - J. Ilm. Ilmu Pendidik., vol. 5, pp. 3258–3267, Sep. 2022, doi: 10.54371/jiip.v5i9.805.
[11] A. Perwira Joan Dwitama, D. Fudholi, and S. Hidayat, “Indonesian Hate Speech Detection Using Bidirectional Long Short-Term Memory (Bi-LSTM),” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 7, pp. 302–309, Mar. 2023, doi: 10.29207/resti.v7i2.4642.
[12] M. Neog and N. Baruah, “A hybrid deep learning approach for Assamese toxic comment detection in social media,” Procedia Comput. Sci., vol. 235, pp. 2297–2306, 2024, doi: https://doi.org/10.1016/j.procs.2024.04.218.
[13] S. Kaur, S. Singh, and S. Kaushal, “Deep learning-based approaches for abusive content detection and classification for multi-class online user-generated data,” Int. J. Cogn. Comput. Eng., vol. 5, pp. 104–122, 2024, doi: https://doi.org/10.1016/j.ijcce.2024.02.002.
[14] E. Zahra, Y. Sibaroni, and S. Prasetyowati, “Classification of Multi-Label of Hate Speech on Twitter Indonesia using LSTM and BiLSTM Method,” JINAV J. Inf. Vis., vol. 4, pp. 170–178, Jul. 2023, doi: 10.35877/454RI.jinav1864.
[15] J. An, W. Lee, Y. Jeon, J. Ok, Y. Kim, and G. Lee, “An Investigation into Explainable Audio Hate Speech Detection,” Jan. 2024, pp. 533–543. doi: 10.18653/v1/2024.sigdial-1.45.
[16] Rivaldo, “aldon_data_unprocessed.” Accessed: Jun. 13, 2025. [Online]. Available: https://www.kaggle.com/datasets/aldonistan/aldon-data-unprocessed
[17] I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019,” Eksplora Inform., vol. 9, pp. 1–10, Sep. 2019, doi: 10.30864/eksplora.v9i1.237.
[18] I. N. Bayu, I. M. A. D. Suarjaya, and P. Buana, “Classification of Indonesian Population’s Level Happiness on Twitter Data Using N-Gram, Naïve Bayes, and Big Data Technology,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, p. 1944, Oct. 2022, doi: 10.18517/ijaseit.12.5.14387.
[19] R. I. Pristiyanti, M. A. Fauzi, and L. Muflikhah, “Sentiment Analysis Peringkasan Review Film Menggunakan Metode Information Gain dan K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 2, no. 3, pp. 1179–1186, 2017.
[20] M. Susanty and S. Sukardi, “Perbandingan Pre-trained Word Embedding dan Embedding Layer untuk Named-Entity Recognition Bahasa Indonesia,” Petir, vol. 14, pp. 247–257, Sep. 2021, doi: 10.33322/petir.v14i2.1164.
[21] M. Suri, “A Dummy’s Guide to Word2Vec. Essentials of Word2Vec.” Accessed: Jun. 12, 2025. [Online]. Available: https://medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673
[22] T. Mikolov, K. Chen, G. s Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Proc. Workshop ICLR, vol. 2013, Jan. 2013.
[23] M. S. Jahan and M. Oussalah, “A systematic review of Hate Speech automatic detection using Natural Language Processing,” May 2021, doi: 10.48550/arXiv.2106.00742.
[24] A. Girsang, “Word Embedding dengan FastText.” Accessed: Jun. 12, 2025. [Online]. Available: https://mti.binus.ac.id/2021/12/31/word-embedding-dengan-fasttext/
[25] S. Cornegruta, R. Bakewell, S. Withey, and G. Montana, “Modelling Radiological Language with Bidirectional Long Short-Term Memory Networks,” Sep. 2016, doi: 10.48550/arXiv.1609.08409.
[26] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition.,” Jan. 2005, pp. 799–804.
[27] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time series classification,” J. Syst. Eng. Electron., vol. 28, pp. 162–169, Feb. 2017, doi: 10.21629/JSEE.2017.01.18.
[28] A. Vaswani et al., “Attention Is All You Need,” Jun. 2017, doi: 10.48550/arXiv.1706.03762.
[29] A. Radford, J. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust Speech Recognition via Large-Scale Weak Supervision,” Dec. 2022, doi: 10.48550/arXiv.2212.04356.
[30] S. Lee, “Hamming Loss Explained: Key Insights for Multi-label Learning.” Accessed: Jul. 03, 2025. [Online]. Available: https://www.numberanalytics.com/blog/hamming-loss-explained-key-insights
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ni Made Deni Sikiandani, I Made Agus Dwi Suarjaya, Yohanes Perdana Putra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








