Real-Time Detection of Coffee Cherry Ripeness Using YOLOv11

Authors

  • Anis Ilyana Universitas Malikussaleh
  • Nurdin Nurdin Departement of Information Technology, Universitas Malikussaleh, Lhokseumawe
  • Maryana Maryana Departement of Informatics, Universitas Malikussaleh, Lhokseumawe

DOI:

https://doi.org/10.30871/jaic.v9i4.9735

Keywords:

Python, Automated Detection System, Coffee Fruit, YOLOv11, Machine Learning

Abstract

This study aims to develop a real-time coffee fruit ripeness detection system using the YOLOv11 algorithm to assist farmers in determining the optimal harvest time. The dataset comprises 302 images categorized into three ripeness levels: ripe, semi-ripe, and unripe. Model training was conducted on Google Colab with data augmentation to enhance dataset variability and prevent overfitting. After 20 epochs, the model demonstrated strong performance in the ripe category (mAP50: 0.774, Precision: 0.645, Recall: 0.812) and satisfactory results for semi-ripe fruits (mAP50: 0.695, Precision: 0.624, Recall: 0.679). However, detection performance for unripe fruits was lower (mAP50: 0.4). The system achieved an inference time of 183.4 ms per image, with fast preprocessing and postprocessing (0.5 ms each), indicating its suitability for real-time applications. While the model performs well overall, further improvement is needed in detecting unripe coffee fruits for enhanced system effectiveness.

Downloads

Download data is not yet available.

References

[1] M. S. Hawibowo and I. Muhimmmah, “Aplikasi Pendeteksi Tingkat Kematangan Pepaya menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android,” J. Edukasi dan Penelit. Inform., vol. 10, no. 1, p. 162, 2024, doi: 10.26418/jp.v10i1.77819.

[2] Nurdin, Bustami, and Maryana, “Robust optimization approach for agricultural commodity supply chain planningg,” J. Theor. Appl. Inf. Technol., vol. 99, no. 2, pp. 304–315, 2021.

[3] J. Rusman and N. Pasae, “Prototype Sistem Penyortir Buah Kopi Arabika Berdasarkan Tingkat Kematangan Menggunakan Metode Support Vector Machine,” Teknika, vol. 12, no. 1, pp. 65–72, 2023, doi: 10.34148/teknika.v12i1.602.

[4] S. R. Raysyah, Veri Arinal, and Dadang Iskandar Mulyana, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 2, pp. 88–95, 2021, doi: 10.30656/jsii.v8i2.3638.

[5] C. R. Gunawan, N. Nurdin, and F. Fajriana, “Deteksi Ikan Segar Secara Realtime dengan YOLOv4 menggunakan Metode Convolutional Neural Network,” J. Komtika (Komputasi dan Inform., vol. 7, no. 1, pp. 1–11, 2023, doi: 10.31603/komtika.v7i1.8986.

[6] J. Ulfah and N. Nurdin, “Implementasi Metode Deteksi Tepi Canny Untuk Menghitung Jumlah Uang Koin Dalam Gambar Menggunakan Opencv,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, pp. 420–426, 2023, doi: 10.23960/jitet.v11i3.3147.

[7] K. Azman, M. Arhami, and A. Azhar, “Metode You Only Look Once (YOLO) dalam Deteksi Physical Distancing dan Wajah Bermasker,” Pros. Semin. Nas. Politek. Negeri Lhokseumawe, vol. 6, no. 1, pp. 107–113, 2022.

[8] A. Rifqi Akyas hifdzi Rahman, Asril Adi Sunarto, “Penerapan (You Only Look Once) V8 Untuk Deteksi Tingkat Kematangan Buah Manggis,” vol. 8, no. 5, pp. 10566–10571, 2024.

[9] R. Sapkota, Z. Meng, M. Churuvija, X. Du, Z. Ma, and M. Karkee, “Comprehensive Performance Evaluation of YOLO11, YOLOv10, YOLOv9 and YOLOv8 on Detecting and Counting Fruitlet in Complex Orchard Environments,” 2024.

[10] P. Hanifah, H. I. Antoni, S. R. Ramadhani, and Yuliska, “Pengembangan Aplikasi Mobile untuk Deteksi Cacat Biji Kopi Robusta Berdasarkan Standar Nasional Indonesia,” pp. 17–26, 2018.

[11] M. F. Golfantara, “Penggunaan Algoritma YOLO V8 Untuk Identifikasi Rempah-Rempah,” vol. 12, no. 3, pp. 3867–3873, 2024.

[12] L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” J. Nas. Ilmu Komput., vol. 2, no. 3, pp. 213–232, 2021, doi: 10.47747/jurnalnik.v2i3.534.

[13] N. Khairunisa, . C., and A. Jamaludin, “Analisis Perbandingan Algoritma Cnn Dan Yolo Dalam Mengidentifikasi Kerusakan Jalan,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4434.

[14] R. Hesananda, D. Natasya, and N. Wiliani, “Cloth Bag Object Detection Using the Yolo Algorithm (You Only See Once) V5,” J. Pilar Nusa Mandiri, vol. 18, no. 2, pp. 217–222, 2023, doi: 10.33480/pilar.v18i2.3019.

[15] C. R. Gunawan, N. Nurdin, and F. Fajriana, “Design of A Real-Time Object Detection Prototype System with YOLOv3 (You Only Look Once),” Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 3, pp. 96–99, 2022, doi: 10.52088/ijesty.v2i3.309.

[16] Y. Yanto, F. Aziz, and I. Irmawati, “Yolo-V8 Peningkatan Algoritma Untuk Deteksi Pemakaian Masker Wajah,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1437–1444, 2023, doi: 10.36040/jati.v7i3.7047.

[17] Z. Hong et al., “Multi-Scale Ship Detection from SAR and Optical Imagery Via A More Accurate YOLOv3,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 6083–6101, 2021, doi: 10.1109/JSTARS.2021.3087555.

[18] S. Du, P. Zhang, B. Zhang, and H. Xu, “Weak and Occluded Vehicle Detection in Complex Infrared Environment Based on Improved YOLOv4,” IEEE Access, vol. 9, pp. 25671–25680, 2021, doi: 10.1109/ACCESS.2021.3057723.

[19] A. Putra Pranjaya, F. Rizki, R. Kurniawan, and N. K. Daulay, “Penyakit Pada Daun Tanaman Padi Berbasis YoloV5 (You Only Look Once),” Media Online), vol. 4, no. 6, pp. 3127–3136, 2024, doi: 10.30865/klik.v4i6.1916.

[20] Y. Zhou et al., “Adaptive Active Positioning of Camellia oleifera Fruit Picking Points: Classical Image Processing and YOLOv7 Fusion Algorithm,” Appl. Sci., vol. 12, no. 24, 2022, doi: 10.3390/app122412959.

[21] H. Wang, X. Xu, Y. Liu, D. Lu, B. Liang, and Y. Tang, “Real-Time Defect Detection for Metal Components: A Fusion of Enhanced Canny–Devernay and YOLOv6 Algorithms,” Appl. Sci., vol. 13, no. 12, 2023, doi: 10.3390/app13126898.

[22] H. T. Vo, K. C. Mui, N. N. Thien, and P. P. Tien, “Automating Tomato Ripeness Classification and Counting with YOLOv9,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 4, pp. 1120–1128, 2024, doi: 10.14569/IJACSA.2024.01504113.

Downloads

Published

2025-08-03

How to Cite

[1]
A. Ilyana, N. Nurdin, and M. Maryana, “Real-Time Detection of Coffee Cherry Ripeness Using YOLOv11”, JAIC, vol. 9, no. 4, pp. 1170–1178, Aug. 2025.

Issue

Section

Articles

Similar Articles

<< < 32 33 34 35 36 > >> 

You may also start an advanced similarity search for this article.