Performance Comparison of Random Forest, SVM, and XGBoost Algorithms with SMOTE for Stunting Prediction

Authors

  • Maulana As'an Hamid Universitas Dian Nuswantoro
  • Egia Rosi Subhiyakto Research Center for Intelligent Distributed Surveilance and Security (IDSS), Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30871/jaic.v9i4.9701

Keywords:

Comparison, Machine Learning, Prediction, Stunting, SMOTE

Abstract

Stunting is a growth and development disorder caused by malnutrition, recurrent infections, and lack of psychosocial stimulation in which a child’s length or height is shorter than the growth standard for their age. With a prevalence of 21.5% in Indonesia by 2023, stunting is a global health problem that requires technology-based detection approaches for early intervention. This study evaluates the performance of three machine learning algorithms: Random Forest (RF), Support Vector Machine (SVM) and eXtreme Gradient Boosting (XGBoost) in predicting childhood stunting, and applying the SMOTE technique to handle data imbalance.  The evaluation results show that XGBoost with SMOTE achieves the best performance with 87.83% accuracy, 85.75% precision, 91.59% recall, and 88.57% F1-score, superior to RF (84.56%) and SVM (68.59%). These results show that the combination of XGBoost and SMOTE is the best solution for an accurate and effective machine learning-based stunting detection system, so it can be used in public health programs to accelerate stunting risk identification.

Downloads

Download data is not yet available.

References

[1] A. A. G. Y. Pramana, M. F. Maulana, M. C. Tirtayasa, and D. A. Tyas, “Enhancing Early Stunting Detection: A Novel Approach using Artificial Intelligence with an Integrated SMOTE Algorithm and Ensemble Learning Model,” in Proceedings - 2024 IEEE Conference on Artificial Intelligence, CAI 2024, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 486–493. doi: 10.1109/CAI59869.2024.00098.

[2] N. Oktavin Idris and N. Umasugi, “Applying the Multi-Attribute Utility Theory (MAUT) to Accurately Determine Stunting Susceptibility Levels in Toddlers,” 2024. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[3] S. Sumardiyono, “Pengaruh Usia, Tinggi Badan Dan Riwayat Pemberian Asi Eksklusif Terhadap Stunting Pada Balita,” Medika Respati : Jurnal Ilmiah Kesehatan, vol. 15, no. 1, p. 1, Feb. 2020, doi: 10.35842/mr.v15i1.269.

[4] I. S. I. Putri, R. S. Pradini, and M. Anshori, “Decision Tree Regression Untuk Prediksi Prevalensi Stunting di Provinsi Nusa Tenggara Timur,” Jurnal Teknologi Informatika dan Komputer, vol. 10, no. 2, pp. 413–427, Sep. 2024, doi: 10.37012/jtik.v10i2.2179.

[5] N. Faoziatun Khusna et al., “Implementasi Random Forest dalam Klasifikasi Kasus Stunting pada Balita dengan Hyperparameter Tuning Grid Search,” Seminar Nasional Sains Data, vol. 2024, 2024.

[6] “Pengembangan PAUD HI Untuk Mendukung Penurunan Stunting di Indonesia,” https://www.kemenkopmk.go.id/index.php/pengembangan-paud-hi-untuk-mendukung-penurunan-stunting-di-indonesia.

[7] Peraturan Presiden Nomor 18 Tahun 2020 Tentang Rencana Pembangunan Jangka Menengah Nasional Tahun 2020-2024.

[8] Y. Wiratama and R. Abdul Aziz, “Perbandingan Prediksi Penyakit Stunting Balita Menggunakan Algoritma Support Vektor Machine dan Random Forest,” Technology and Science (BITS), vol. 6, no. 2, pp. 1159–1168, 2024, doi: 10.47065/bits.v6i2.5543.

[9] A. Mizwar, A. Rahim, P. Hartato, A. Ridwan, and F. Asharudin, “Machine Learning-Based Approach for HIV/AIDS Prediction: Feature Selection and Data Balancing Strategy,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[10] H. Hasanah, “Perbandingan Tingkat Akurasi Algoritma Support Vector Machines (SVM) dan C45 dalam Prediksi Penyakit Jantung,” 2023.

[11] I. P. Putri, T. Terttiaavini, and N. Arminarahmah, “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 257–265, Jan. 2024, doi: 10.57152/malcom.v4i1.1078.

[12] T. Sugihartono, B. Wijaya, Marini, A. F. Alkayes, and H. A. Anugrah, “Optimizing Stunting Detection through SMOTE and Machine Learning: a Comparative Study of XGBoost, Random Forest, SVM, and k-NN,” Journal of Applied Data Sciences, vol. 6, no. 1, pp. 667–682, Jan. 2025, doi: 10.47738/jads.v6i1.494.

[13] N. Rizki Febriyanti and A. Dwi Hartanto, “Edumatic: Jurnal Pendidikan Informatika Analisis Perbandingan Algoritma SVM, Random Forest dan Logistic Regression untuk Prediksi Stunting Balita,” Edumatic: Jurnal Pendidikan Informatika, vol. 9, no. 1, pp. 149–158, 2025, doi: 10.29408/edumatic.v9i1.29407.

[14] D. Nurmalasari, H. R. Yuliantoro, D. Hidayatul Qudsi, T. Informasi, P. Caltex Riau, and A. Perpajakan, “Improving Panic Disorder Classification Using SMOTE and Random Forest,” Journal of Applied Informatics and Computing (JAIC), vol. 8, no. 2, p. 272, 2024, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[15] M. I. Maulana, F. Nugraha, and A. Setiawan, “Model Prediksi Kualitas Air Untuk Budidaya Ikan Lele Dengan Algoritma Extreme Gradient Boosting,” Technology and Science (BITS), vol. 6, no. 3, 2024, doi: 10.47065/bits.v6i3.5998.

Downloads

Published

2025-08-03

How to Cite

[1]
Maulana As'an Hamid and Egia Rosi Subhiyakto, “Performance Comparison of Random Forest, SVM, and XGBoost Algorithms with SMOTE for Stunting Prediction”, JAIC, vol. 9, no. 4, pp. 1163–1169, Aug. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.