Sentiment and Emotional Analysis of The Public Housing Savings Program (TAPERA) using Orange Data Mining

Authors

  • Hawangga Dhiyaul Fadly Universitas Negeri Yogyakarta
  • Handaru Jati Universitas Negeri Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i3.9297

Keywords:

Sentiment, Emotion, VADER, POMS, Tapera

Abstract

This study employs a text analysis methodology to assess public perception of the People's Housing Savings Program (TAPERA), by examining 3.078 tweets containing the keyword "tapera" using the Orange Data Mining application with two analytical approaches: the Valence Aware Dictionary and Sentiment Reasoner (VADER) for sentiment analysis and the Profile of Mood States (POMS) for emotional analysis. The sentiment analysis results indicate 1.481 tweets (48,2%) expressed negative sentiment, 830 tweets (27%) were neutral, and 767 tweets (24,8%) conveyed positive sentiment. These findings suggest that although there is a portion of positive responses toward the TAPERA policy, most of the public tends to express dissatisfaction or scepticism about the program. Furthermore, the emotional analysis identified depression as the most dominant emotion expressed by the public, appearing in 2.019 tweets (65,6%), followed by confusion (14,7%) and anger (9,6%). Positive emotions such as vigour and tension were recorded in significantly lower proportions, at 2,9% and 1,8%, respectively. These results illustrate that the public feels frustrated, confused, and anxious regarding the TAPERA policy, with minimal expressions of optimism or enthusiasm. This analysis highlights the need for a more transparent, educational, and data-driven communication approach to enhance public understanding, trust, and participation in the TAPERA policy. Therefore, the government must design more effective outreach strategies to address public concerns and ensure the successful implementation of this program.

Downloads

Download data is not yet available.

References

[1] Goverment of Indonesia, “Government Regulation of the Republic of Indonesia Number 28 Year 2012,” 2024.

[2] G. Wijburg, “Tax-incentivized housing production and the affordability crisis: International lessons from the low-income housing tax credit program in the United States,” Hous. Stud., vol. 39, no. 7, pp. 1632–1657, Aug. 2024, doi: 10.1080/02673037.2022.2135172.

[3] G. U. Fayomi, E. K. Onyari, and S. E. Mini, “Evaluating social housing potential for low-income urban dwellers in Johannesburg,” Case Stud. Chem. Environ. Eng., vol. 9, 2024, doi: 10.1016/j.cscee.2024.100737.

[4] J. Ferri and F. Herranz-Baez, “Government expenditure and the housing puzzle: Unpacking mechanisms,” Econ. Model., vol. 140, no. November 2023, p. 106844, 2024, doi: 10.1016/j.econmod.2024.106844.

[5] S. Rassanjani, I. Rahmi, and S. Ulya, “Affordable and Sustainable Government-Subsidized Housing Development in Aceh Besar Regency,” Int. J. Sustain. Dev. Plan., vol. 18, no. 6, pp. 1893–1899, 2023, doi: 10.18280/ijsdp.180625.

[6] B. Ferrario and S. Stantcheva, “Eliciting People’s First-Order Concerns: Text Analysis of Open-Ended Survey Questions,” AEA Pap. Proc., vol. 112, pp. 163–169, 2022, doi: 10.1257/pandp.20221071.

[7] R. Sarwar, A. T. Rutherford, S.-U. Hassan, T. Rakthanmanon, and S. Nutanong, “Native Language Identification of Fluent and Advanced Non-Native Writers,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 19, no. 4, Apr. 2020, doi: 10.1145/3383202.

[8] Q. Qiu and J. Qiu, “Encoding Sememe and Context Information into Sentence Representation for Implicit Sentiment Analysis,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 83, 2021, pp. 423–433.

[9] H. Wang and M. Hou, “Quantum-like implicit sentiment analysis with sememes knowledge,” Expert Syst. Appl., vol. 232, 2023, doi: 10.1016/j.eswa.2023.120720.

[10] L. Rao, “Sentiment Analysis of English Text with Multilevel Features,” Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/7605125.

[11] D. Li, X. Shi, and M. Dai, “A Text Sentiment Classification Method Enhanced by Bi-GRU and Attention Mechanism,” in Lecture Notes in Electrical Engineering, 2024, vol. 1125, pp. 176–186, doi: 10.1007/978-981-99-9239-3_18.

[12] Luth, Kismartini, D. Lituhayu, R. Maswati, and T. Baharuddin, “Public Response on Twitter: The Urgency of Government Policy on Electric Vehicles,” E3S Web Conf., vol. 440, pp. 1–8, 2023, doi: 10.1051/e3sconf/202344003023.

[13] Y. Ortakci, “Revolutionary text clustering: Investigating transfer learning capacity of SBERT models through pooling techniques,” Eng. Sci. Technol. an Int. J., vol. 55, no. April, p. 101730, 2024, doi: 10.1016/j.jestch.2024.101730.

[14] T. Zang and H. Gu, “State-Space Modeling of Housing Sentiment for Regressing Changes of Real Estate Prices Following Short-Term Control Policy in China,” Sustain., vol. 15, no. 16, 2023, doi: 10.3390/su151612660.

[15] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” Naacl-Hlt 2019, no. Mlm, pp. 4171–4186, 2018, [Online]. Available: https://aclanthology.org/N19-1423.pdf.

[16] Ismail, H. N. Rahmah, and R. Sulistiyowati, “Penggunaan Software Orange Data Mining Pada Implementasi Text Mining Dalam Analisis Sentimen Netizen Di Twitter Terhadap Kelangkaan Minyak Goreng,” Sigma-Mu, vol. 14, no. 2, pp. 1–11, 2022, doi: 10.35313/sigmamu.v14i2.4667.

[17] H. Dhery, A. Assyam, and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.

[18] A. Munawaroh, R. Ridhoi, and R. Rudiman, “Sentiment Analysis Dengan Naïve Bayes Berbasis Orange Terhadap Resiko Pembangunan Ikn,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 587–592, 2024, doi: 10.36040/jati.v8i1.8454.

[19] R. A. raffaidy Wiguna and A. I. Rifai, “Analisis Text Clustering Masyarakat Di Twitter Mengenai Omnibus Law Menggunakan Orange Data Mining,” J. Inf. Syst. Informatics, vol. 3, no. 1, pp. 1–12, 2021, doi: 10.33557/journalisi.v3i1.78.

[20] C. J. Hutto and E. Gilbert, “VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text,” Eighth Int. AAAI Conf. Weblogs Soc. Media, pp. 216–225, 2014, [Online]. Available: https://ojs.aaai.org/index.php/ICWSM/article/view/14550.

[21] D. M. McNair, L. F. Droppleman, and M. Lorr, Edits manual for the profile of mood states: POMS. Edits, 1992.

[22] A. Kada, A. Chouikh, S. Mellouli, A. J. Prashad, S. E. Straus, and C. Fahim, “An exploration of Canadian government officials’ COVID-19 messages and the public’s reaction using social media data,” PLoS One, vol. 17, no. 9 September, 2022, doi: 10.1371/journal.pone.0273153.

[23] A. R. Lubis and M. K. M. Nasution, “Twitter Data Analysis and Text Normalization in Collecting Standard Word,” J. Appl. Eng. Technol. Sci., vol. 4, no. 2, pp. 855–863, 2023, doi: 10.37385/jaets.v4i2.1991.

[24] S. Bashir et al., “Twitter chirps for Syrian people: Sentiment analysis of tweets related to Syria Chemical Attack,” Int. J. Disaster Risk Reduct., vol. 62, no. May, p. 102397, 2021, doi: 10.1016/j.ijdrr.2021.102397.

[25] A. S. Imran, S. M. Daudpota, Z. Kastrati, and R. Batra, “Cross-cultural polarity and emotion detection using sentiment analysis and deep learning on covid-19 related tweets,” IEEE Access, vol. 8, pp. 181074–181090, 2020, doi: 10.1109/ACCESS.2020.3027350.

[26] S. Elbagir and J. Yang, “Sentiment Analysis on Twitter with Python’s Natural Language Toolkit and VADER Sentiment Analyzer,” vol. 0958, pp. 63–80, 2020, doi: 10.1142/9789811215094_0005.

[27] S. Gul and S. Shueb, “Twitter as a Mourning Dove for the Blooming Buds: An Analysis of Twitter’s Reaction to Peshawar School Attack,” in MILID Yearbook, P. K. Jagtar Singh and E. Hamburger, Eds. Paris, France: United Nations Educational, Scientific and Cultural Organization, 2016, pp. 237–247.

[28] S. Gul et al., “Twitter sentiments related to natural calamities,” Electron. Libr., vol. 36, no. 1, pp. 38–54, Jan. 2018, doi: 10.1108/EL-12-2015-0244.

[29] A. Tarango-García, S. O. Lugo-Reyes, and A. Alvarez-Cardona, “Sentiment analysis on allergen immunotherapy on Twitter using a natural language processing model,” Rev. Alerg. Mex., vol. 71, no. 1, pp. 8–11, 2024, doi: 10.29262/ram.v71i1.1263.

[30] A. Chug, S. Sudeep, P. A. Kumar, A. Sharma, D. Maganti, and E. Uchoi, “Machine learning-based emotional identification of social media text,” in Computational Methods in Science and Technology - Proceedings of the 4th International Conference on Computational Methods in Science and Technology, ICCMST 2024, 2025, vol. 2, pp. 295–301, doi: 10.1201/9781003561651-42.

[31] KOMPAS.COM, “Tapera Tak Jamin Beri Rumah, Tak Bisa Disamakan dengan BPJS Kesehatan,” 2024. https://nasional.kompas.com/read/2024/06/12/09001811/tapera-tak-jamin-beri-rumah-tak-bisa-disamakan-dengan-bpjs-kesehatan (accessed Apr. 10, 2025).

[32] KOMPAS.COM, “Jajak Pendapat Litbang ”Kompas”: Resistensi Publik terhadap Tapera Terbilang Tinggi,” 2024. https://www.kompas.id/baca/riset/2024/06/11/jajak-pendapat-litbang-kompas-resistensi-publik-terhadap-tapera-terbilang-tinggi (accessed Apr. 10, 2025).

[33] M. P. Firdaus and D. Trisnawarman, “Public Sentiment Analysis of the Public Housing Savings Program Using the IndoBERT Lite Model on YouTube Comments Analisis Sentimen Publik Terhadap Program Tabungan Perumahan Rakyat Menggunakan Model IndoBERT Lite pada Komentar YouTube,” vol. 5, no. January, pp. 359–368, 2025.

[34] M. P. Prameswari, R. Abidin, P. Studi, A. Syariah, and W. Pekalongan, “ANALISIS MEDIA MONITORING TERHADAP ISU TAPERA MELALUI MEDIA,” vol. 4, no. 1, pp. 7–12, 2024.

[35] A. R. Lubis, S. Nailah, and Y. P. Utami, “Analisis Isu Pada Media Sosial ( X ) Terkait Program TAPERA Berdasarkan Peraturan Pemerintah,” vol. 4, no. 3, pp. 395–405, 2025.

[36] K. Tamura, Y. Sano, and J. Shiozaki, “Quantifying Collective Emotions: Japan’s Societal Trends Through Enhanced Sentiment Index Using POMS2 and SNS,” Proc. - 2024 IEEE Int. Conf. Big Data, BigData 2024, pp. 3082–3087, 2024, doi: 10.1109/BigData62323.2024.10826099.

[37] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock market,” J. Comput. Sci., vol. 2, no. 1, pp. 1–8, 2011, doi: 10.1016/j.jocs.2010.12.007.

Downloads

Published

2025-06-03

How to Cite

[1]
H. D. Fadly and H. Jati, “Sentiment and Emotional Analysis of The Public Housing Savings Program (TAPERA) using Orange Data Mining”, JAIC, vol. 9, no. 3, pp. 625–632, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.