Implementation of YOLO v11 for Image-Based Litter Detection and Classification in Environmental Management Efforts

Authors

  • Lingga Kurnia Ramadhani Universitas IVET Semarang
  • Bajeng Nurul Widyaningrum Politeknik Bina Trada Semarang

DOI:

https://doi.org/10.30871/jaic.v9i3.9213

Keywords:

YOLO v11, Object Detection, Junk, Apps

Abstract

This research implements YOLO v11 for image-based waste detection and classification to improve waste management efficiency. The model recognizes four categories of waste: inorganic, organic, hazardous and residual. The training results showa [email protected] of 0.989 and a maximum F1 of 0.98 at an optimal confidence level of 0.669. The model had high precision on the Organic (0.995) and B3 (0.991) classes, but faced difficulties in classifying the Residue category. The confusion matrix revealed most of the predictions were accurate, despite some misclassification. The model also showed stable performance under various lighting and background conditions. With this reliability, YOLO v11 can be applied in automated sorting systems to improve recycling efficiency and support sustainable environmental management, although further improvements to data augmentation and class weight adjustment are still needed.

Downloads

Download data is not yet available.

References

[1] M. S. Nafiz, S. S. Das, M. K. Morol, A. Al Juabir, and D. Nandi, “ConvoWaste: An Automatic Waste Segregation Machine Using Deep Learning,” Int. Conf. Robot. Electr. Signal Process. Tech., vol. 2023-Janua, pp. 181–186, 2023, doi: 10.1109/ICREST57604.2023.10070078.

[2] M. G. V. Kumar, M. Kumar, K. N. Rao, P. S. Rao, A. Tirumala, and E. Patnala, “Advanced YOLO-Based Trash Classification and Recycling Assistant for Enhanced Waste Management and Sustainability,” 2nd Int. Conf. Intell. Cyber Phys. Syst. Internet Things, ICoICI 2024 -Proc., no. September, pp. 1238–1246, 2024, doi: 10.1109/ICoICI62503.2024.10696214.

[3] R. Sasaki, M. Fujinami, and H. Nakai, “Comprehensive image dataset for enhancing object detection in chemical experiments,” Data Br., vol. 52, p. 110054, 2024, doi: 10.1016/j.dib.2024.110054.

[4] B. A. Yolv, D. Adriansyah, M. Pajar, and K. Putra, “Sistem Deteksi Objek Visual Sampah Organik Dan Anorganik,” vol. 6, no. 2, pp. 0–9, 2025, doi: 10.47065/josh.v6i2.6454.

[5] E. Z. Kuang, K. R. Bhandari, and J. Gao, “Optimizing Waste Management with Advanced Object Detection for Garbage Classification,” 2024, [Online]. Available: http://arxiv.org/abs/2410.09975

[6] B. D. Prasetya, E. P. Amalia, and P. D. Juliana, “Implementasi Object Detection Berbasis Web untuk Klasifikasi Jenis Sampah Menggunakan YOLOv8,” vol. 4, pp. 60–65, 2025.

[7] N. Crasto, “Class Imbalance in Object Detection: An Experimental Diagnosis and Study of Mitigation Strategies,” vol. 5, 2024, [Online]. Available: http://arxiv.org/abs/2403.07113

[8] A. I. Pradana, “Deteksi Rambu Lalu Lintas Real-Time di Indonesia dengan Penerapan YOLOv11 : Solusi Untuk Keamanan Berkendara,” pp. 145–155, 2024, doi: 10.33364/algoritma/v.21-2.2106.

[9] M. Al-husaini, A. R. Raharja, V. Hafizh, C. Putra, and H. Hen, “Journal of Computer Networks , Architecture and High Performance Computing Enhanced Plant Disease Detection Using Computer Vision YOLOv11 : Pre-Trained Neural Network Model Application Journal of Computer Networks , Architecture and High Performance Comp,” vol. 7, no. 1, pp. 82–95, 2025.

[10] H. D. Kahingide and A. Salam, “Deployment of Kidney Tumor Disease Object Detection Using CT-Scan with YOLOv5,” J. Appl. Informatics Comput., vol. 8, no. 1, pp. 98–105, 2024, doi: 10.30871/jaic.v8i1.7771.

[11] Q. Zhang, Q. Yang, X. Zhang, Q. Bao, J. Su, and X. Liu, “Waste image classification based on transfer learning and convolutional neural network,” Waste Manag., vol. 135, no. May, pp. 150–157, 2021, doi: 10.1016/j.wasman.2021.08.038.

[12] A. Aprilla, W. Prihartono, C. L. Rohmat, and K. Kunci, “Optimasi Model Klasifikasi Citra Sampah Daur Ulang Dengan Algoritma Yolo11,” J. KHATULISTIWA Inform., vol. 12, no. 2, pp. 92–97, 2024.

[13] R. Khanam and M. Hussain, “YOLOv11: An Overview of the Key Architectural Enhancements,” vol. 2024, pp. 1–9, 2024, [Online]. Available: http://arxiv.org/abs/2410.17725

[14] D. Waskito, D. F. Syarifah, and R. A. Aprilianto, “Comparison of the Use of YOLOv11 Variations in the Empty Parking Spaces Detection System,” vol. 23, no. 1, pp. 1–10, 2025.

[15] W. Liu et al., “Future climate change significantly alters interannual wheat yield variability over half of harvested areas,” Environ. Res. Lett., vol. 16, no. 9, 2021, doi: 10.1088/1748-9326/ac1fbb.

[16] J. Fritsch, T. Kuhnl, and A. Geiger, “A new performance measure and evaluation benchmark for road detection algorithms,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, no. November, pp. 1693–1700, 2013, doi: 10.1109/ITSC.2013.6728473.

Downloads

Published

2025-06-03

How to Cite

[1]
L. K. Ramadhani and B. N. Widyaningrum, “Implementation of YOLO v11 for Image-Based Litter Detection and Classification in Environmental Management Efforts”, JAIC, vol. 9, no. 3, pp. 617–624, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.