Turtle Dove Classification Using CNN Algorithm With MobileNetV2 Transfer Learning

Authors

  • Muhammad Minanul Lathif Universitas Dian Nuswantoro
  • Sendi Novianto Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30871/jaic.v9i4.9173

Keywords:

Classification, Convolutional Neural Network, MobileNetV2, Transfer Learning, Turtle Dove

Abstract

This study aims to optimize the performance of a Convolutional Neural Network (CNN) model based on the MobileNetV2 architecture in classifying Java sparrow images by testing four main parameters: optimizer, learning rate, number of epochs, and batch size. The dataset consists of 800 images divided evenly into four classes. The results show that using the Adam optimizer yields the best accuracy with a training accuracy of 97.50%, validation accuracy of 98.75%, and testing accuracy of 98.13%. A learning rate of 0.001 produces the same results, indicating consistent performance with this configuration. Epoch testing shows that 35 epochs yield the highest performance with a training accuracy of 98.39%, validation accuracy of 100%, and testing accuracy of 98.75%. Meanwhile, batch size testing shows that a batch size of 32 yields the highest testing accuracy of 98.85%, a batch size of 64 yields the highest training accuracy of 98.63%, and a batch size of 128 yields the highest validation accuracy of 99.58%. These findings suggest that smaller batch sizes tend to yield better performance in terms of model generalization, while larger batch sizes provide higher stability in the training process but do not always reflect actual performance on the test data. The results of this study can serve as a reference for selecting parameter configurations to improve the accuracy and generalization of image classification models using MobileNetV2. These results emphasize the importance of proper parameter settings in improving the accuracy and stability of image classification models. They can be a reference in model development in object recognition.

Downloads

Download data is not yet available.

References

[1] E. Prasetyo and R. Wulandari, “Richness, Diversity, and Conservation Status of Bird Species in Maron Beach, Semarang, Indonesia,” Quagga J. Pendidik. dan Biol., vol. 13, no. 1, p. 95, 2020, doi: 10.25134/quagga.v13i1.3664.

[2] S. J. Marshall, Harry. Collar, Nigel J. Lees, Alexander C. Moss, Andrew. Yuda, Pramana. Marsden, “People and Nature - 2020 - Marshall - Characterizing bird‐keeping user‐groups on Java reveals distinct behaviours profiles.” 2020.

[3] J. Iskandar, B. S. Iskandar, D. Mulyanto, R. L. Alfian, and R. Partasasmita, “Traditional ecological knowledge of the bird traders on bird species bird naming, and bird market chain: A case study in bird market pasty Yogyakarta, Indonesia,” Biodiversitas, vol. 21, no. 6, pp. 2586–2602, 2020, doi: 10.13057/biodiv/d210631.

[4] “Conservat Sci and Prac - 2021 - Marshall - Understanding motivations and attitudes among songbird‐keepers to identify best.pdf.”

[5] R. L. White, K. Eberstein, and D. M. Scott, “Birds in the playground: Evaluating the effectiveness of an urban environmental education project in enhancing school children’s awareness, knowledge and attitudes towards local wildlife,” PLoS One, vol. 13, no. 3, pp. 1–23, 2018, doi: 10.1371/journal.pone.0193993.

[6] P. Rose and M. O’brien, “Welfare assessment for captive anseriformes: A guide for practitioners and animal keepers,” Animals, vol. 10, no. 7, pp. 1–19, 2020, doi: 10.3390/ani10071132.

[7] K. Salaman and K. Magelang, “Inventory of Bird Species in Kedung Kopong and Banyak,” vol. 4, no. February, pp. 125–128, 2021.

[8] F. Delfiah, H. R. Harun, S. A. Zahara, and S. Ayu, “Diversitas dan Etno-ornitologi Burung Bernilai Ekonomis sebagai Bentuk Kearifan Lokal Masyarakat di Pasar Hobi , Toddoppuli , Makassar ( Diversity and Ethno-ornithology of Economically Valued Birds as a Form of Local Community Wisdom at Pasar Hobi , Toddo,” vol. 3, no. Lc, pp. 17–32, 2024.

[9] R. A. Saputra, Suharyanto, S. Wasiyanti, D. F. Saefudin, A. Supriyatna, and A. Wibowo, “Rice Leaf Disease Image Classifications Using KNN Based on GLCM Feature Extraction,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012080.

[10] Muhathir and Al-Khowarizmi, “Measuring the Accuracy of SVM with Varying Kernel Function for Classification of Indonesian Wayang on Images,” 2020 Int. Conf. Decis. Aid Sci. Appl. DASA 2020, pp. 1190–1196, 2020, doi: 10.1109/DASA51403.2020.9317197.

[11] K. Baran, “Smartphone thermal imaging for stressed people classification using CNN+MobileNetV2,” Procedia Comput. Sci., vol. 225, pp. 2507–2515, 2023, doi: 10.1016/j.procs.2023.10.242.

[12] S. A. Agnes, J. Anitha, S. I. A. Pandian, and J. D. Peter, “Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN),” J. Med. Syst., vol. 44, no. 1, 2020, doi: 10.1007/s10916-019-1494-z.

[13] D. Sinha and M. El-Sharkawy, “Thin MobileNet: An Enhanced MobileNet Architecture,” 2019 IEEE 10th Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf. UEMCON 2019, pp. 0280–0285, 2019, doi: 10.1109/UEMCON47517.2019.8993089.

[14] M. Cui and D. Y. Zhang, “Artificial intelligence and computational pathology,” Lab. Investig., vol. 101, no. 4, pp. 412–422, 2021, doi: 10.1038/s41374-020-00514-0.

[15] X. Pei et al., “Robustness of machine learning to color, size change, normalization, and image enhancement on micrograph datasets with large sample differences,” Mater. Des., vol. 232, p. 112086, 2023, doi: 10.1016/j.matdes.2023.112086.

[16] H. J. Kim, J. W. Baek, and K. Chung, “Associative Knowledge Graph Using Fuzzy Clustering and Min-Max Normalization in Video Contents,” IEEE Access, vol. 9, pp. 74802–74816, 2021, doi: 10.1109/ACCESS.2021.3080180.

[17] A. Masitha and M. Kunta Biddinika, “KLIK: Kajian Ilmiah Informatika dan Komputer Preparing Dual Data Normalization for KNN Classfication in Prediction of Heart Failure,” Media Online, vol. 4, no. 3, pp. 1227–1234, 2023, doi: 10.30865/klik.v4i3.1382.

[18] P. Musa, F. Al Rafi, and M. Lamsani, “A review: Contrast-limited adaptive histogram equalization (CLAHE) methods to help the application of face recognition,” Proc. 3rd Int. Conf. Informatics Comput. ICIC 2018, no. October, pp. 1–6, 2018, doi: 10.1109/IAC.2018.8780492.

[19] C. Shorten, T. M. Khoshgoftaar, and B. Furht, Text Data Augmentation for Deep Learning, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00492-0.

[20] Q. Zhu, H. Zhuang, M. Zhao, S. Xu, and R. Meng, “A study on expression recognition based on improved mobilenetV2 network,” Sci. Rep., vol. 14, no. 1, pp. 1–11, 2024, doi: 10.1038/s41598-024-58736-x.

[21] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms and Applications,” pp. 1–56, 2020, [Online]. Available: http://arxiv.org/abs/2003.05689

[22] J. Jepkoech, D. M. Mugo, B. K. Kenduiywo, and E. C. Too, “The Effect of Adaptive Learning Rate on the Accuracy of Neural Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 8, pp. 736–751, 2021, doi: 10.14569/IJACSA.2021.0120885.

[23] G. Geetharamani and A. P. J., “Identification of plant leaf diseases using a nine-layer deep convolutional neural network,” Comput. Electr. Eng., vol. 76, pp. 323–338, 2019, doi: 10.1016/j.compeleceng.2019.04.011.

[24] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team, “An Empirical Model of Large-Batch Training,” 2018, [Online]. Available: http://arxiv.org/abs/1812.06162

[25] G. Jain, D. Mittal, D. Thakur, and M. K. Mittal, “A deep learning approach to detect Covid-19 coronavirus with X-Ray images,” Biocybern. Biomed. Eng., vol. 40, no. 4, pp. 1391–1405, 2020, doi: 10.1016/j.bbe.2020.08.008.

[26] S. A. Hicks et al., “On evaluation metrics for medical applications of artificial intelligence,” Sci. Rep., vol. 12, no. 1, pp. 1–9, 2022, doi: 10.1038/s41598-022-09954-8.

[27] B. Jang, M. Kim, G. Harerimana, S. U. Kang, and J. W. Kim, “Bi-LSTM model to increase accuracy in text classification: Combining word2vec CNN and attention mechanism,” Appl. Sci., vol. 10, no. 17, 2020, doi: 10.3390/app10175841.

[28] M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” pp. 1–17, 2020, [Online]. Available: http://arxiv.org/abs/2008.05756

Downloads

Published

2025-08-07

How to Cite

[1]
Muhammad Minanul Lathif and S. Novianto, “Turtle Dove Classification Using CNN Algorithm With MobileNetV2 Transfer Learning”, JAIC, vol. 9, no. 4, pp. 1701–1708, Aug. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.