Improving Attack Detection in IoV with Class Balancing and Feature Selection

Authors

  • Thierry Widyatama Fakultas Ilmu Komputer, Teknik Informatika, Universitas Dian Nuswantoro, Semarang
  • Ifan Rizqa Fakultas Ilmu Komputer, Teknik Informatika, Universitas Dian Nuswantoro, Semarang
  • Fauzi Adi Rafrastara Fakultas Ilmu Komputer, Teknik Informatika, Universitas Dian Nuswantoro, Semarang

DOI:

https://doi.org/10.30871/jaic.v9i2.9080

Keywords:

Internet of Vehicles, IoV, DoS Attack, Spoofing Attack, Ensemble Learning

Abstract

The Internet of Vehicles (IoV) represents a specialized application of the Internet of Things (IoT), enabling vehicles to communicate with their surrounding infrastructure to enhance transportation safety and efficiency. However, IoV systems are susceptible to various cyberattacks, including Denial of Service (DoS) and spoofing attacks, which necessitate effective and efficient detection mechanisms. This study investigates the enhancement of detection efficiency for DoS and spoofing attacks in IoV by employing Ensemble Learning methods combined with feature selection techniques. The selected feature selection methods include Information Gain Ratio, Chi-Square (X²), and Fast Correlation-Based Filter (FCBF). The CICIoV2024 dataset, utilized in this study, was balanced using the Random Under Sampling technique to address data imbalance issues. The ensemble algorithms evaluated in this research comprise Random Forest, Gradient Boosting, and XGBoost. Results indicate that all three algorithms achieved high accuracy and F1 scores, reaching 0.985. Moreover, the application of feature selection significantly reduced computational time without compromising detection performance. These findings are expected to contribute to the advancement of IoV security systems in the future.

Downloads

Download data is not yet available.

References

[1] A. Korte, V. Tiberius, and A. Brem, “Internet of Things (IoT) Technology Research in Business and Management Literature: Results from a Co-Citation Analysis,” JTAER, vol. 16, no. 6, pp. 2073–2090, Aug. 2021, doi: 10.3390/jtaer16060116.

[2] S. Ahmetoglu, Z. Che Cob, and N. Ali, “A Systematic Review of Internet of Things Adoption in Organizations: Taxonomy, Benefits, Challenges and Critical Factors,” Applied Sciences, vol. 12, no. 9, p. 4117, Apr. 2022, doi: 10.3390/app12094117.

[3] A. M. Rahmani, S. Bayramov, and B. Kiani Kalejahi, “Internet of Things Applications: Opportunities and Threats,” Wireless Pers Commun, vol. 122, no. 1, pp. 451–476, Jan. 2022, doi: 10.1007/s11277-021-08907-0.

[4] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for future technology enhancement: a review,” J Big Data, vol. 6, no. 1, p. 111, Dec. 2019, doi: 10.1186/s40537-019-0268-2.

[5] A. Talpur and M. Gurusamy, “Machine Learning for Security in Vehicular Networks: A Comprehensive Survey,” IEEE Commun. Surv. Tutorials, vol. 24, no. 1, pp. 346–379, 2022, doi: 10.1109/COMST.2021.3129079.

[6] M. B. Mollah et al., “Blockchain for the Internet of Vehicles towards Intelligent Transportation Systems: A Survey,” IEEE Internet Things J., vol. 8, no. 6, pp. 4157–4185, Mar. 2021, doi: 10.1109/JIOT.2020.3028368.

[7] K. Al Marri, F. A. Mir, S. A. David, and M. Al-Emran, Eds., BUiD Doctoral Research Conference 2023: Multidisciplinary Studies, vol. 473. in Lecture Notes in Civil Engineering, vol. 473. Cham: Springer Nature Switzerland, 2024. doi: 10.1007/978-3-031-56121-4.

[8] E. Alalwany and I. Mahgoub, “Security and Trust Management in the Internet of Vehicles (IoV): Challenges and Machine Learning Solutions,” Sensors, vol. 24, no. 2, p. 368, Jan. 2024, doi: 10.3390/s24020368.

[9] L. Khoukhi, H. Xiong, S. Kumari, and N. Puech, “The Internet of vehicles and smart cities,” Ann. Telecommun., vol. 76, no. 9–10, pp. 545–546, Oct. 2021, doi: 10.1007/s12243-021-00891-7.

[10] C. Storck and F. Duarte-Figueiredo, “A 5G V2X Ecosystem Providing Internet of Vehicles,” Sensors, vol. 19, no. 3, p. 550, Jan. 2019, doi: 10.3390/s19030550.

[11] T. Christensen, S. B. Mandavilli, and C.-Y. Wu, “The Dark Side of The Internet of Vehicles: A Survey of the State of IoV and its Security Vulnerabilities”.

[12] P. Sharma, M. Patel, and A. Prasad, “A systematic literature review on Internet of Vehicles Security,” Dec. 16, 2022, arXiv: arXiv:2212.08754. Accessed: Oct. 23, 2024. [Online]. Available: http://arxiv.org/abs/2212.08754

[13] O. A. Albishi and M. Abdullah, “DDoS Attacks Detection in IoV using ML-based Models with an Enhanced Feature Selection Technique,” IJACSA, vol. 15, no. 2, 2024, doi: 10.14569/IJACSA.2024.0150282.

[14] M. A. H. Zamrai, K. Mohamad Yusof, and A. Azizan, “Dissecting Denial of Service (DoS) Syn Flood Attack Dynamics and Impacts in Vehicular Communication Systems,” ITM Web Conf., vol. 63, p. 01008, 2024, doi: 10.1051/itmconf/20246301008.

[15] K. B. Adedeji, A. M. Abu-Mahfouz, and A. M. Kurien, “DDoS Attack and Detection Methods in Internet-Enabled Networks: Concept, Research Perspectives, and Challenges,” p. 57, Jul. 2023, doi: 10.3390/jsan12040051.

[16] S. Dasgupta, M. Rahman, M. Islam, and M. Chowdhury, “Prediction-Based Gnss Spoofing Attack Detection For Autonomous Vehicles”.

[17] F. A. Rafrastara, W. Ghozi, and A. Wardoyo, “Deteksi Serangan berbasis Machine Learning pada Internet of Vehicle,” vol. 2024, 2024.

[18] E. C. P. Neto et al., “CICIoV2024: Advancing realistic IDS approaches against DoS and spoofing attack in IoV CAN bus,” Internet of Things, vol. 26, p. 101209, Jul. 2024, doi: 10.1016/j.iot.2024.101209.

[19] Y. Yang and G. Mirzaei, “Performance analysis of data resampling on class imbalance and classification techniques on multi-omics data for cancer classification,” PLoS ONE, vol. 19, no. 2, p. e0293607, Feb. 2024, doi: 10.1371/journal.pone.0293607.

[20] T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining,” Information, vol. 14, no. 1, p. 54, Jan. 2023, doi: 10.3390/info14010054.

[21] M. Kim and K.-B. Hwang, “An empirical evaluation of sampling methods for the classification of imbalanced data,” PLoS ONE, vol. 17, no. 7, p. e0271260, Jul. 2022, doi: 10.1371/journal.pone.0271260.

[22] A. S. Tarawneh, A. B. Hassanat, G. A. Altarawneh, and A. Almuhaimeed, “Stop Oversampling for Class Imbalance Learning: A Review,” IEEE Access, vol. 10, pp. 47643–47660, 2022, doi: 10.1109/ACCESS.2022.3169512.

[23] L. Shen, Y. Sun, Z. Yu, L. Ding, X. Tian, and D. Tao, “On Efficient Training of Large-Scale Deep Learning Models: A Literature Review,” Apr. 07, 2023, arXiv: arXiv:2304.03589. Accessed: Oct. 30, 2024. [Online]. Available: http://arxiv.org/abs/2304.03589

[24] M. K. Diallo and O. Karahan, “Intrusion detection system using Optimized Machine Learning Algorithms for cyberattacks in the Internet of Vehicles (IoV),” in Cognitive Models and Artificial Intelligence Conference Proceedings, SETSCI, Jul. 2019, pp. 13–19. doi: 10.36287/setsci.17.1.0013.

[25] M. Y. Khan, A. Qayoom, M. S. Nizami, M. S. Siddiqui, S. Wasi, and S. M. K.-R. Raazi, “Automated Prediction of Good Dictionary EXamples (GDEX): A Comprehensive Experiment with Distant Supervision, Machine Learning, and Word Embedding‐Based Deep Learning Techniques,” Complexity, vol. 2021, no. 1, p. 2553199, Jan. 2021, doi: 10.1155/2021/2553199.

[26] L. Mentch and S. Zhou, “Randomization as Regularization: A Degrees of Freedom Explanation for Random Forest Success”.

[27] R.-C. Chen, C. Dewi, S.-W. Huang, and R. E. Caraka, “Selecting critical features for data classification based on machine learning methods,” J Big Data, vol. 7, no. 1, p. 52, Dec. 2020, doi: 10.1186/s40537-020-00327-4.

[28] H. Deng, Y. Zhou, L. Wang, and C. Zhang, “Ensemble learning for the early prediction of neonatal jaundice with genetic features,” BMC Med Inform Decis Mak, vol. 21, no. 1, p. 338, Dec. 2021, doi: 10.1186/s12911-021-01701-9.

[29] S. E. Suryana, B. Warsito, and S. Suparti, “Penerapan Gradient Boosting Dengan Hyperopt Untuk Memprediksi Keberhasilan Telemarketing Bank,” J.Gauss, vol. 10, no. 4, pp. 617–623, Dec. 2021, doi: 10.14710/j.gauss.v10i4.31335.

[30] H. Firmansyah and Z. Abidin, “Penerapan Algoritma Gradient Boosted Decision Trees Pada Adaboost Untuk Klasifikasi Status Desa,” vol. 1, no. 1, 2022.

[31] W. Wang, G. Chakraborty, and B. Chakraborty, “Predicting the Risk of Chronic Kidney Disease (CKD) Using Machine Learning Algorithm,” Applied Sciences, vol. 11, no. 1, p. 202, Dec. 2020, doi: 10.3390/app11010202.

[32] G. Abdurrahman, H. Oktavianto, and M. Sintawati, “Optimasi Algoritma XGBoost Classifier Menggunakan Hyperparameter Gridesearch dan Random Search Pada Klasifikasi Penyakit Diabetes,” INFORMAL, vol. 7, no. 3, p. 193, Dec. 2022, doi: 10.19184/isj.v7i3.35441.

[33] T. Z. Jasman, M. A. Fadhlullah, A. L. Pratama, and R. Rismayani, “Analisis Algoritma Gradient Boosting, Adaboost dan Catboost dalam Klasifikasi Kualitas Air,” JuTISI, vol. 8, no. 2, Aug. 2022, doi: 10.28932/jutisi.v8i2.4906.

[34] T. Hu and X.-H. Zhou, “Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions,” Apr. 14, 2024, arXiv: arXiv:2404.09135. Accessed: Oct. 31, 2024. [Online]. Available: http://arxiv.org/abs/2404.09135

[35] M. Guimarães et al., “Predicting Model Training Time to Optimize Distributed Machine Learning Applications,” Electronics, vol. 12, no. 4, p. 871, Feb. 2023, doi: 10.3390/electronics12040871.

[36] J. Hübotter, S. Bongni, I. Hakimi, and A. Krause, “Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs,” Oct. 10, 2024, arXiv: arXiv:2410.08020. Accessed: Oct. 31, 2024. [Online]. Available: http://arxiv.org/abs/2410.08020

Downloads

Published

2025-03-08

How to Cite

[1]
T. Widyatama, I. Rizqa, and F. A. Rafrastara, “Improving Attack Detection in IoV with Class Balancing and Feature Selection”, JAIC, vol. 9, no. 2, pp. 241–249, Mar. 2025.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.