Comparison of Machine Learning Methods for Menstrual Cycle Analysis and Prediction
DOI:
https://doi.org/10.30871/jaic.v9i2.9076Keywords:
Machine Learning, menstrual cycle, prediction, LSTM, CNN, Decision Tree, reproductive healthAbstract
This study compares three machine learning methods—Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Decision Tree—for analyzing and predicting menstrual cycles. The dataset consists of 1,665 samples with 80 attributes encompassing information related to menstrual health. These methods were evaluated using accuracy, Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) metrics. The results show that LSTM achieved the highest accuracy (91.3%), followed by CNN (88.9%) and Decision Tree (85.2%). LSTM excelled in capturing complex temporal patterns in menstrual cycle data, while CNN effectively identified key patterns, and Decision Tree offered interpretability despite lower performance. This study concludes that LSTM is the most effective model for menstrual cycle prediction. The findings highlight the potential for improved accuracy in reproductive health tracking, with future research opportunities to incorporate additional variables such as hormonal history and lifestyle factors, as well as a focus on data privacy.
Downloads
References
[1] K. Li, I. Urteaga, A. Shea, V. J. Vitzthum, C. H. Wiggins, and N. Elhadad, “A generative, predictive model for menstrual cycle lengths that accounts for potential self-tracking artifacts in mobile health data,” arXiv preprint arXiv:2102.12439, 2021.
[2] K. Li, I. Urteaga, A. Shea, V. J. Vitzthum, C. H. Wiggins, and N. Elhadad, “A predictive model for next cycle start date that accounts for adherence in menstrual self-tracking,” Journal of the American Medical Informatics Association, vol. 29, no. 1, pp. 3–11, 2022.
[3] I. Lestari, M. Akbar, and B. Intan, “Perbandingan Algoritma Machine Learning Untuk klasifikasi Amenorrhea,” Journal of Computer and Information Systems Ampera, vol. 4, no. 1, pp. 32–43, 2023.
[4] T. Thakur, S. Kadam, N. Patil, and C. Achrekar, “Machine Learning in Period, Fertility and Ovulation Tracking Application,” Authorea Preprints, 2023.
[5] H. Nooraini, U. Salamah and H. Prasetyo, "The Comparison of Classification of Stress Level Related to Student's Menstrual Cycle Irregularities with Support Vector Machine and Decision Tree Algorithm," 2022 5th International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 2022, pp. 133-138, doi: 10.1109/ICOIACT55506.2022.9972141.
[6] M. Deverashetti, K. Ranjitha, and K. V Pradeepthi, “Security analysis of menstruation cycle tracking applications using static, dynamic and machine learning techniques,” Journal of Information Security and Applications, vol. 67, p. 103171, 2022.
[7] Silva, I., & Soto, M. (2022). Privacy-preserving data sharing in healthcare: an in-depth analysis of big data solutions and regulatory compliance. International Journal of Applied Health Care Analytics, 7(1), 14-23.
[8] H. Nooraini, U. Salamah, and H. Prasetyo, “The Comparison of Classification of Stress Level Related to Student’s Menstrual Cycle Irregularities with Support Vector Machine and Decision Tree Algorithm,” in 2022 5th International Conference on Information and Communications Technology (ICOIACT), 2022, pp. 133–138. doi: 10.1109/ICOIACT55506.2022.9972141.
[9] Waqas, M., & Humphries, U. W. (2024). A critical review of RNN and LSTM variants in hydrological time series predictions. MethodsX, 102946.
[10] Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS journal of photogrammetry and remote sensing, 173, 24-49.
[11] Ahmadlou, M., Ebrahimian Ghajari, Y., & Karimi, M. (2022). Enhanced classification and regression tree (CART) by genetic algorithm (GA) and grid search (GS) for flood susceptibility mapping and assessment. Geocarto International, 37(26), 13638-13657.
[12] M. A. Faishol, E. Endroyono, and A. N. Irfansyah, “Predict Urban Air Pollution in Surabaya Using Recurrent Neural Network–Long Short Term Memory,” Jurnal Ilmiah Teknologi Informasi, vol. 18, no. 2, pp. 102–114, 2020.
[13] R. H. Rafliansyah, B. Rahmat, and C. A. Putra, “Klasifikasi Suara Instrumen Musik Tiup Menggunakan Metode Convolutional Neural Network,” Merkurius: Jurnal Riset Sistem Informasi dan Teknik Informatika, vol. 2, no. 4, pp. 1–9, 2024.
[14] A. S. Munir, A. B. Saputra, A. Aziz, and M. A. Barata, “Perbandingan Akurasi Algoritma Naive Bayes dan Algoritma Decision Tree dalam Pengklasifikasian Penyakit Kanker Payudara,” Jurnal Ilmiah Informatika Global, vol. 15, no. 1, pp. 23–29, 2024.
[15] U. Lathifah and R. D. Dana, “Implementasi Metode Linear Regression Untuk Prediksi Harga Properti Real Estate Menggunakan Rapidminer,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 1129–1137, 2024.
[16] A. Arwansyah, S. Suryani, H. S. Y. H. SY, A. Ahyuna, U. Usman, and S. Alam, “Model Prediksi Deret Waktu Menggunakan Deep Convolutional LSTM,” in SISITI: Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, 2024, pp. 21–25.
[17] A. Dwika and D. Avianto, “Implementasi Algoritma LSTM untuk Prediksi Harga Cabai Merah Keriting di Yogyakarta,” Jurnal Indonesia: Manajemen Informatika dan Komunikasi, vol. 5, pp. 635–648, Jan. 2024, doi: 10.35870/jimik.v5i1.534.
[18] A. Wibowo, “Kecerdasan Buatan Gabungan pada Sistem Operasi Bisnis,” Penerbit Yayasan Prima Agus Teknik, pp. 1–187, 2024.
[19] N. Yudistira et al., Prediksi Deret Waktu Menggunakan Deep Learning. Universitas Brawijaya Press, 2023.
[20] R. F. Putra et al., Data Mining: Algoritma dan Penerapannya. PT. Sonpedia Publishing Indonesia, 2023.
[21] M. Alfandi, P. Pristiwanto, and A. M. H. Sihite, “Penerapan Metode CNN-LSTM Dalam Memprediksi Hujan Pada Wilayah Medan,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 6, no. 1, pp. 490–499, 2023.
[22] I. K. Trisiawan, Y. Yuliza, and S. Attamimi, “Penerapan multi-label image classification menggunakan metode convolutional neural network (cnn) untuk sortir botol minuman,” Jurnal Teknologi Elektro, vol. 13, no. 1, pp. 48–54, 2022.
[23] A. Taherkhani, G. Cosma, and T. M. McGinnity, “A Deep Convolutional Neural Network for Time Series Classification with Intermediate Targets,” SN Comput Sci, vol. 4, no. 6, p. 832, 2023.
[24] S. J. Pipin, R. Purba, and H. Kurniawan, “Prediksi Saham Menggunakan Recurrent Neural Network (RNN-LSTM) dengan Optimasi Adaptive Moment Estimation,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 4, pp. 806–815, 2023.
[25] W. D. Febrianti and N. K. J. Najah, “Analisis Klasifikasi Kepuasan Penumpang Maskapai Penerbangan Menggunakan Metode Support Vector Machine, Decision Tree, Dan Random Forest”.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mutiara Khairunisa, Desak Made Sidantya Amanda Putri, I Gusti Ngurah Lanang Wijayakusuma

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).