Implementation of LSTM Method on Tidal Prediction in Semarang Region

Authors

  • Panreshma Rizkha Ambadar Mathematics Department, UIN Sunan Ampel
  • Dian C Rini Novitasari Mathematics Department, UIN Sunan Ampel
  • Yuniar Farida Mathematics Department, UIN Sunan Ampel
  • Moh Hafiyusholeh Mathematics Department, UIN Sunan Ampel
  • Fajar Setiawan Badan Meteorologi, Klimatologi, dan Geofisika (BMKG)

DOI:

https://doi.org/10.30871/jaic.v9i2.8932

Keywords:

Java Sea, Long Short-Term Memory, Prediction, Semarang, Tidal

Abstract

Semarang is the capital of the Central Java province, located in the north and directly adjacent to the Java Sea. Having an almost flat land condition with a slope of about 0-2%, Semarang City has the opportunity to experience tidal flooding. The occurrence of tides does not have a fixed period. So, it is necessary to predict the height of the tide and the ebb of the seawater. Thus, this research aims to predict tides in the Semarang area using the LSTM method. The data used is tidal data in Semarang waters from 2020 to 2024. The advantage of the LSTM method is its ability to effectively remember time series data or data with long-term dependence. LSTM can store past information using special cells contained in its structure. This research on tidal prediction using the LSTM method with 70% training data trial batch size 32 and epoch 200 obtained the smallest error value, namely the MAE value of 0.0388 and MAPE of 0.0313 which is the best LSTM result.

Downloads

Download data is not yet available.

References

[1] F. R. Kusumaningsih, M. J. Umar, F. Hanum, A. Arum, T. R. Fariz, and A. V. Amalia, “Dampak Banjir Pasang Surut (Rob) Terhadap Masyarakat Pesisir Di Kota Semarang,” Semin. Nas. IPA XIII, pp. 695–702, 2023.

[2] L. A. Karondia, E. Y. Handoko, and H. H. Handayani, “Analisa Kerentanan Pesisir Kota Semarang menggunakan algoritma CVI (Coastal Vulnerability Index),” Geoid, vol. 18, no. 1, p. 99, 2022, doi: 10.12962/j24423998.v18i1.12969.

[3] A. A. Egaputra, D. H. Ismunarti, and W. S. Pranowo, “Inventarisasi Kejadian Banjir Rob Kota Semarang Periode 2012 - 2020,” Indones. J. Oceanogr., vol. 4, no. 2, pp. 29–40, 2022, doi: 10.14710/ijoce.v4i2.13240.

[4] M. O. Andnur, S. Widada, and A. Dwi, “Analisis Tinggi Muka Air Laut dan Penurunan Muka Tanah untuk Perencanaan Tinggi Lantai Bangunan di Pesisir Utara Kota Semarang Tinggi Muka Air Rata-rata ( Mean sea level ) Tinggi Muka Air Tertinggi ( High Highest Water Level ) Tinggi Muka Air Terendah ( L,” Indones. J. Oceanogr., vol. 04, no. 02, pp. 56–60, 2022.

[5] A. N. Rahman, N. Kurniadin, R. Wumu, and S. I. Suryalfihra, “Identifikasi Luasan Banjir Rob di Kota Semarang Pada Tanggal 24 Mei 2022 Menggunakan Citra Landsat,” J. Geomatics Eng. Technol. Sci., vol. 01, no. 02, pp. 50–53, 2023.

[6] D. Setiawan, D. L. Setyowati, H. T. Atmaja, and M. S. Mustofa, “Strategi Bertahan Hidup Masyarakat Terdampak Banjir Rob di Pesisir Semarang,” Pros. Semin. Nas. Pascasarj. Univ. Negeri Semarang, vol. 6, no. 1, pp. 180–183, 2023.

[7] A. A. Saifullah and A. Hidayat, “Sistem Prediksi Pasang Surut Air Laut Stasiun Meteorologi Maritim Tanjung Emas Semarang Dengan Metode Least Squares,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 4, no. 2, p. 113, 2022, doi: 10.36499/jinrpl.v4i2.6722.

[8] W. A. Arifin, I. Ariawan, A. A. Rosalia, A. S. Sasongko, and M. R. Apriansyah, “Jurnal Kemaritiman : Indonesian Journal of Maritime Model Prediksi Pasang Surut Air Laut Pada Stasiun Pushidrosal,” J. Kemaritiman Indones. J. Marit., vol. 2, no. 2, pp. 105–112, 2021.

[9] V. Wuwung, R. M. Rampengan, H. W. K. Manengkey, R. A. Bara, R. Djamaaludin, and F. Losung, “Acquisition of Tidal Measurement Data in The Waters Around Bitung City For Predictional Purposes,” J. Ilm. PLATAX, vol. 11, no. 2, pp. 614–622, 2023, doi: 10.35800/jip.v11i2.48800.

[10] N. Nikentari, N. Ritha, and T. Haryadi, “Prediksi Pasang Surut Air Laut Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Sustain. J. Has. Penelit. dan Ind. Terap., vol. 7, no. 1, pp. 1–6, 2018, doi: 10.31629/sustainable.v7i1.443.

[11] M. E. S. Wicaksono, G. M. Arya Sasmita, and I. P. A. Eka Pratama, “Peramalan Kualitas Udara di Kota Jakarta Pusat dengan Metode Long Short-Term Memory dan Support-Vector Regression,” JITTER J. Ilm. Teknol. dan Komput., vol. 4, no. 1, p. 1576, 2023, doi: 10.24843/jtrti.2023.v04.i01.p03.

[12] S. Sen, D. Sugiarto, and A. Rochman, “Komparasi Metode Multilayer Perceptron ( MLP ) dan Long Short Term Memory ( LSTM ) dalam Peramalan Harga Beras,” vol. XII, no. 1, pp. 35–41, 2020.

[13] S. Hidayatullah and A. Cherid, “Prediksi Temperatur Cuaca di Negara Norwegia Menggunakan Metode LSTM,” Simkom, vol. 8, no. 2, pp. 187–198, 2023, doi: 10.51717/simkom.v8i2.192.

[14] UNESCO, “map @ www.ioc-sealevelmonitoring.org.” https://www.ioc-sealevelmonitoring.org/map.php

[15] T. A. Faisal Muhammad and M. I. Irawan, “Implementasi Long Short-Term Memory (LSTM) untuk Prediksi Intensitas Curah Hujan (Studi Kasus: Kabupaten Malang),” J. Sains dan Seni ITS, vol. 12, no. 1, 2023, doi: 10.12962/j23373520.v12i1.106892.

[16] T. Ericko, M. D. Lauro, and T. Handhayani, “Prediksi Harga Pangan di Pasar Tradisional Kota Surabaya dengan Metode LSTM,” J. Ilmu Komput. dan Sist. Inf., vol. 11, no. 2, 2023.

[17] M. David, I. Cholissodin, and N. Yudistira, “Prediksi Harga Cabai menggunakan Metode Long-Short Term Memory ( Case Study : Kota Malang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1214–1219, 2023.

[18] G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory ( LSTM ),” J. Nas. Teknol. DAN Sist. Inf., vol. 08, no. 03, pp. 164–172, 2022.

[19] M. F. Rizkilloh and S. Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 25–31, 2022.

[20] T. Lattifia, P. Wira, N. Kadek, and D. Rusjayanthi, “Model Prediksi Cuaca Menggunakan Metode LSTM,” JITTER- J. Ilm. Teknol. dan Komput., vol. 3, no. 1, 2022.

[21] Y. Karyadi and H. Santoso, “Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 671–684, 2022, doi: 10.35957/jatisi.v9i1.1588.

[22] N. Selle, N. Yudistira, and C. Dewi, “Perbandingan Prediksi Penggunaan Listrik dengan Menggunakan Metode Long Short Term Memory (LSTM) dan Recurrent Neural Network (RNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 1, pp. 155–162, 2022, doi: 10.25126/jtiik.2022915585.

[23] T. A. F. Muhammad and M. I. Irawan, “Implementasi Long Short-Term Memory ( LSTM ) untuk Prediksi Intensitas Curah Hujan,” J. SAINS DAN SENI ITS, vol. 12, no. 1, 2023.

[24] N. K. Agusmawati, F. Khoiriyah, and A. Tholib, “Prediksi Harga Emas Menggunakan Metode LSTM Dan GRU,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, pp. 620–627, 2023, doi: 10.23960/jitet.v11i3.3250.

[25] K. Kurniawan, B. Ceasaro, and Sucipto, “Perbandingan Fungsi Aktivasi Untuk Meningkatkan Kinerja Model LSTM Dalam Prediksi Ketinggian Air Sungai,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 10, no. 1, pp. 134–143, 2024.

[26] S. Sautomo and H. F. Pardede, “Prediksi Belanja Pemerintah Indonesia Menggunakan Long Short-Term,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 99–106, 2021.

[27] F. Fahira and C. Prianto, “Prediksi Pola Kedatangan Turis Mancanegara dan Menganalisis Ulasan Tripadvisor dengan LSTM dan LDA,” J. Tekno Insentif, vol. 17, no. 2, pp. 69–83, 2023, doi: 10.36787/jti.v17i2.1096.

[28] D. I. Puteri, “Implementasi Long Short Term Memory ( LSTM ) dan Bidirectional Long Short Term Memory ( BiLSTM ) Dalam Prediksi Harga Saham Syariah,” EULER J. Ilm. Mat. Sains dan Teknol., vol. 11, no. 1, pp. 35–43, 2023, doi: https://doi.org/10.34312/euler.v11i1.1979.

Downloads

Published

2025-03-17

How to Cite

[1]
P. R. Ambadar, D. C. R. Novitasari, Y. Farida, M. Hafiyusholeh, and F. Setiawan, “Implementation of LSTM Method on Tidal Prediction in Semarang Region”, JAIC, vol. 9, no. 2, pp. 398–304, Mar. 2025.

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.