Software Development for Swimmer Performance Prediction System Based on Physical Characteristics using XGBoost
DOI:
https://doi.org/10.30871/jaic.v10i1.12176Keywords:
Prediction Performance, Swimmer, Physical Characteristics, Website, XGBoostAbstract
Swimmer performance assessment in Indonesia still largely depends on coaches’ intuition, which may lead to subjective decisions and inconsistencies in training program planning, particularly in environments where frequent changes in coaches and sports administrators occur. The lack of structured and data-driven performance assessment tools further limits the continuity and objectivity of athlete development. This study aims to develop a web-based system capable of predicting swimmers’ performance potential by estimating race times based on physical characteristics using the XGBoost model. The proposed system is designed to support coaches in identifying athlete performance potential in a more objective and data-driven manner. Model evaluation results indicate that the XGBoost model achieved an R² value of 0.9190, demonstrating a very high level of prediction accuracy, with an average prediction time of 7.036 seconds. Software testing results confirm that the system operates as intended and is able to present prediction outputs in the form of estimated swimming time, performance percentage, and performance classification into four categories: Very High, High, Medium, and Low. Furthermore, usability evaluation using the USE method yielded excellent results, with an average score of 88.16%.
Downloads
References
[1] I. M. S. Mahardika, Renang the science of swimming. Jawa Timur: Zifatama Jawara, 2024.
[2] Martinus, Tandiyo Rahayu, Rumini, and Tri Rustiadi, Pembinaan prestasi cabang olahraga renang, 1st ed., vol. 1. Jawa Tengah: Zahira Media Publisher, 2021.
[3] E. Rahayu and O. P. Mulyana, “Hubungan antara goal-setting dan motivasi berprestasi dengan prestasi atlet renang,” Character: Jurnal Penelitian Psikologi, vol. 3, no. 3, Feb. 2015, doi: 10.26740/cjpp.v3i3.10947.
[4] D. Setyaningsih, A. Soemarmi, and U. S. Hardjanto, “Pelaksanaan Peraturan Presiden Nomor 95 Tahun 2017 tentang peningkatan prestasi olahraga nasional pada olahraga akuatik,” Diponegoro Law Journal, vol. 8, no. 1, pp. 184–192, Jan. 2019, doi: 10.14710/dlj.2019.25333.
[5] Sekretariat Kabinet Republik Indonesia, “Klasemen akhir Olimpiade Paris 2024: Amerika Serikat posisi pertama, Indonesia peringkat ke-39.” Accessed: May 14, 2025. [Online]. Available: https://setkab.go.id/klasemen-akhir-olimpiade-paris-2024-amerika-serikat-posisi-pertama-indonesia-peringkat-ke-39/
[6] M. S. Anjasmoro and T. Soenyoto, “Survei pembinaan prestasi atlet renang di Pemalang: Studi pada Shark Swimming Club tahun 2021,” Indonesian Journal for Physical Education and Sport, vol. 4, no. 1, Jul. 2023, doi: 10.15294/inapes.v4i1.51894.
[7] S. Susilawati, “Implementasi manajemen pelatih renang di Club Ciamis Aquatic,” Indonesian Journal of Education Management and Administration Review, vol. 4, no. 1, pp. 213–219, Jun. 2020.
[8] S. Sugito, M. A. H. Allsabah, and R. P. Putra, “Manajemen kepelatihan klub renang Kota Kediri tahun 2019,” Jurnal SPORTIF: Jurnal Penelitian Pembelajaran, vol. 6, no. 1, pp. 1–271, Apr. 2020, doi: 10.29407/js_unpgri.v6i1.14021.
[9] A. Widi, E. Sediyono, K. D. Hartomo, I. Sembiring, and A. Iriani, “Development of Knowledge Management System with Soft System Metodhology in Aquatic Organization,” in 2022 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, Oct. 2022, pp. 143–146. doi: 10.23919/EECSI56542.2022.9946489.
[10] S. Sugiarto and A. B. Hananto, “Kontribusi karakteristik antropometri terhadap kemampuan fisik dan kinerja renang gaya bebas,” Prosiding Seminar Nasional Olahraga, vol. 4, no. 1, pp. 23–31, Jun. 2022.
[11] P. Alexiou et al., “A descriptive study of coaches’ perceptions regarding talent identification and development in swimming,” International Journal of Human Movement and Sports Sciences, vol. 12, no. 2, pp. 326–336, Feb. 2024, doi: 10.13189/saj.2024.120207.
[12] J. Juriana, K. Tahki, and G. Zulfitranto, “Pengetahuan psikologi olahraga pada pelatih renang Indonesia,” Jurnal ilmiah Sport Coaching and Education, vol. 2, no. 1, pp. 31–38, Jan. 2018.
[13] F. B. Negara, Y. Yarmani, and Y. E. Nopiyanto, “Pengetahuan psikologi olahraga pada pelatih renang dengan prestasi atlet renang di Rejang Lebong,” Sport Gymnatics: Jurnal Ilmiah Pendidikan Jasmani, vol. 2, no. 2, pp. 228–239, Oct. 2021, doi: 10.33369/gymnastics.
[14] S. Ganzevles, R. Vullings, P. Jan Beek, H. Daanen, and M. Truijens, “Using tri-axial accelerometry in daily elite swim training practice,” Sensors, vol. 17, no. 5, pp. 1–14, Apr. 2017, doi: 10.3390/s17050990.
[15] Q. F. Hidayat, A. W. B. Utomo, and A. S. Prayoga, “Hubungan antara tinggi badan, panjang tungkai, dan kekuatan otot lengan terhadap prestasi renang gaya dada 50 meter pada perenang Tirta Lawu Swimming Club usia 13–14 tahun di Kecamatan Ngrambe, Kabupaten Ngawi,” Journal Sport Science Indonesia (JASSI), vol. 3, no. 2, pp. 400–409, May 2024, doi: 10.31258/jassi.3.2.415-429.
[16] R. H. Ali, G. F. Yosika, and D. Pranata, “Identifikasi profil antropometri atlet klub renang di Kota Pontianak,” Jurnal Pendidikan Jasmani Khatulistiwa, vol. 3, no. 2, pp. 149–156, Nov. 2022, doi: 10.26418/jpjk.v3i2.64035.
[17] W. Prasiwi and S. Darnoto, “Hubungan antara usia dan masa kerja dengan kapasitas fungsi paru pada supeltas di Surakarta,” Prosiding Semnas & Call for Papers Prodi Kesehatan Masyarakat 2017, pp. 68–71, Jul. 2017.
[18] A. Rohendi and H. Rustiawan, “Kebutuhan sport science pada bidang olahraga prestasi,” Research Physical Education and Sports (Journal RESPECS), vol. 2, no. 1, pp. 32–43, Jan. 2020, doi: 10.31949/jr.v2i1.2013.
[19] A. Y. Kurniawan, M. Rozaq, and A. Diana, “Penggunaan teknologi digital dalam pembelajaran sains dan olahraga untuk meningkatkan literasi dan pemahaman siswa,” Journal Sport Science, Health and Tourism of Mandalika (Jontak), vol. 6, no. 1, pp. 33–42, Jan. 2024, doi: 10.36312/jontak.v6i1.4053.
[20] H. Rong, Q. Zewen, M. Hao, H. Zhezhe, and X. Yue, “Sports performance prediction for college students through ensemble learning algorithm,” IEICE Trans Inf Syst, pp. 1–8, Jan. 2025.
[21] A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan kinerja regresi Decision Tree dan regresi linear berganda untuk prediksi BMI pada dataset Asthma,” Jurnal Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, Feb. 2023, doi: 10.24246/juses.v6i1p34-43.
[22] A. Kannanthara and M. Jose, “Optimizing performance analysis in swimming races: Exploring segmented approaches to race behaviour,” Digitala Vetenskapliga Arkivet (DiVA), pp. 1–33, Jun. 2024.
[23] A. Nandedkar, C. Gadve, C. Gowda, S. Deep, and R. Mulla, “Athlete performance prediction using Random Forest,” Int J Res Appl Sci Eng Technol, vol. 12, no. 5, pp. 2370–2377, May 2024, doi: 10.22214/ijraset.2024.62112.
[24] W. Chansanam et al., “Enhancing predictive accuracy in educational assessment: A comparative analysis of machine learning models for predicting student performance,” Review of Contemporary Philosophy, vol. 23, no. 1, pp. 142–160, Jun. 2024.
[25] J. Brownlee, XGBoost with Python: Gradient boosted trees with XGBoost and scikit-learn. Machine Learning Mastery, 2016.
[26] I. Maulita and A. M. Wahid, “Prediksi magnitudo gempa menggunakan Random Forest, Support Vector Regression, XGBoost, LightGBM, dan Multi-Layer Perceptron berdasarkan data kedalaman dan geolokasi,” Jurnal Pendidikan dan Teknologi Indonesia (JPTI), vol. 4, no. 5, pp. 221–232, Dec. 2024, doi: 10.52436/1.jpti.470.
[27] C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A comparative analysis of gradient boosting algorithms,” Artif Intell Rev, vol. 54, no. 3, pp. 1937–1967, Mar. 2020, doi: 10.1007/s10462-020-09896-5.
[28] Y. Rahmadi, Y. A. P, and M. A. H, “Pengembangan modul freemium aplikasi TEL-US (Telkom University Store) menggunakan metode iterative incremental dan framework Laravel,” e-Proceeding of Engineering, vol. 2, no. 2, pp. 5437–5444, Aug. 2015.
[29] S. E. Prastya, M. C. Saputra, and D. Pramono, “Pengembangan sistem informasi data pasien Seksi Rehabilitasi BNN Kota Malang menggunakan metode iterative incremental,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 2, no. 12, pp. 6587–6596, Dec. 2018.
[30] D. H. Syahputra, R. Hanafi, and R. Andreswari, “Perancangan sistem informasi pemasaran Invenit pada PT. Sibayak Gugung Nari berbasis website menggunakan metode iterative incremental,” e-Proceeding of Engineering, vol. 8, no. 1, pp. 634–647, Feb. 2021.
[31] R. S. Afifah, F. M. Al Anshary, and M. Hardiyanti, “Pengembangan aplikasi roll bagi customer berbasis website menggunakan metode iterative dan incremental,” eProceedings of Engineering, vol. 9, no. 2, pp. 650–655, Apr. 2022.
[32] I. A. Faruqi, S. F. S. Gumilang, and M. A. Hasibuan, “Perancangan back-end aplikasi Rumantara dengan gaya arsitektur REST menggunakan metode iterative incremental,” e-Proceeding of Engineering, vol. 5, no. 1, pp. 1411–1417, Mar. 2018.
[33] K. D. Permana, R. Fauzi, and S. Suakanto, “Pengembangan backend investasi berbasis website pada ekosistem digital Ihya dengan metode iterative incremental,” Jurnal Riset Komputer (JURIKOM), vol. 9, no. 5, pp. 1226–1233, Oct. 2022, doi: 10.30865/jurikom.v9i5.4830.
[34] A. Zulfa, A. Kusyono, T. N. Adi, and E. L. Thohiroh, “Pengembangan website edukasi kesehatan balita dengan menggunakan metode iterative incremental,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 5, no. 1, pp. 263–274, Aug. 2024, doi: 10.30865/klik.v5i1.1962.
[35] Y. I. Chandra, M. Riastuti, and D. Kosdiana, “Penerapan model iterative incremental dalam membangun aplikasi e-commerce di Toko Kopi Rarukuh Luas berbasis web mobile,” Seminar Nasional Teknologi Informasi dan Komunikasi STI&K (SeNTIK), vol. 7, no. 1, pp. 179–190, Jul. 2023.
[36] I. Muhamad and M. Matin, “Hyperparameter tuning menggunakan GridsearchCV pada Random Forest untuk deteksi malware,” Journal Multimedia Networking Informatics (MULTINETICS), vol. 9, no. 1, pp. 43–50, May 2023, doi: 10.32722/multinetics.v9i1.5578.
[37] W. Nugraha and A. Sasongko, “Hyperparameter tuning on classification algorithms using Grid Search,” SISTEMASI: Jurnal Sistem Informasi, vol. 11, no. 2, pp. 391–401, May 2022, doi: 10.32520/stmsi.v11i2.1750.
[38] I. K. Nti, O. Nyarko-Boateng, and J. Aning, “Performance of machine learning algorithms with different K values in K-fold cross-validation,” Article in International Journal of Information Technology and Computer Science, vol. 6, pp. 61–71, Dec. 2021, doi: 10.5815/ijitcs.2021.06.05.
[39] A. B. Majumder et al., “Heart disease prediction using concatenated hybrid ensemble classifiers,” Algorithms, vol. 16, no. 12, Dec. 2023, doi: 10.3390/a16120538.
[40] R. A. Sianturi, A. M. Sinaga, Y. Pratama, H. Simatupang, J. Panjaitan, and S. Sihotang, “Perancangan pengujian fungsional dan nonfungsional aplikasi SIAPPARA di Kabupaten Humbang Hasundutan,” Jurnal Komputer dan Informatika (J-ICON), vol. 9, no. 2, pp. 133–141, Sep. 2021, doi: 10.35508/jicon.v9i2.4706.
[41] S. F. Muthmainnah and H. P. Putro, “Pengujian nonfungsional dengan pendekatan McCall’s Factor pada perspektif product revision,” AUTOMATA, vol. 4, pp. 1–8, Nov. 2023.
[42] V. H. Pranatawijaya, W. Widiatry, R. Priskila, and P. B. A. A. Putra, “Penerapan Skala Likert dan Skala Dikotomi Pada Kuesioner Online,” Jurnal Sains dan Informatika, vol. 5, no. 2, pp. 128–137, Dec. 2019, doi: 10.34128/jsi.v5i2.185.
[43] M. Fiqih Erinsyah, G. W. Sasmito, D. S. Wibowo, and V. K. Bakti, “Sistem evaluasi pada aplikasi akademik menggunakan metode skala Likert dan algoritma Naïve Bayes,” KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 13, no. 1, pp. 74–82, Apr. 2024, doi: 10.34010/komputa.v13i1.10940.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Surya Pratama Tanzil, Tinaliah Tinaliah, Anugerah Widi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








