Development of YOLO-Based Mobile Application for Detection of Defect Types in Robusta Coffee Beans
Abstract
Improving the quality of Robusta coffee beans is a crucial challenge in the coffee industry to ensure that consumers receive high-quality products. However, the identification of defects in coffee beans is still largely performed manually, making the process error-prone and time-consuming. This study aims to develop a YOLO-based mobile application to detect defects in Robusta coffee beans quickly and accurately. The method employed in this study is YOLO, a deep learning-based object detection algorithm known for its real-time object detection capabilities. The application was tested using a dataset of Robusta coffee beans containing various defects, such as broken, black, and wrinkled beans. The test results indicate that the application achieves high detection accuracy, with the black bean class achieving 95.3% accuracy, while the moldy or bleached bean class records the lowest accuracy at 62.2%. This application is expected to assist farmers and coffee industry stakeholders in improving the quality of Robusta coffee beans and enhancing the efficiency of the sorting process.
Downloads
References
Arlius, F., Tjandra, M. A., & Yanti, D. (2017). Analisis Kesesuaian Lahan Untuk Pengembangan Komoditas Kopi Arabika Di Kabupaten Solok. Jurnal Teknologi Pertanian Andalas, 21(1), 70-78.
Rasiska, S., & Khairullah, A. (2017). Efek tiga jenis pohon penaung terhadap keragaman serangga pada pertanaman kopi di Perkebunan Rakyat Manglayang, Kecamatan Cilengkrang, Kabupaten Bandung. Agrikultura, 28(3).
Ardhiarisca, O., & Wijayanti, R. R. (2022). Studi Perbandingan Nilai Ekonomi Kopi Arabika dan Robusta dalam Bisnis Mikro. Jurnal Ilmiah Inovasi, 22(1), 42-50.
Chandra, D., Ismono, R. H., & Kasymir, E. (2013). Prospek perdagangan kopi Robusta Indonesia di pasar internasional. Jurnal Ilmu-Ilmu Agribisnis, 1(1).
Zakaria, A., Aditiawati, P., & Rosmiati, M. (2017). Strategi pengembangan usahatani kopi arabika (kasus pada petani kopi di Desa Suntenjaya Kecamatan Lembang Kabupaten Bandung Barat, Provinsi Jawa Barat). Jurnal sosioteknologi, 16(3), 325-339.
Mawardi, I., Hanif, H., Zaini, Z., & Abidin, Z. (2019). Penerapan teknologi tepat guna pascapanen dalam upaya peningkatan produktifitas petani kopi di Kabupaten Bener Meriah. CARADDE: Jurnal Pengabdian Kepada Masyarakat, 1(2), 205-213.
Ikhsan, D., Utami, E., & Wibowo, F. W. (2020). Metode Klasifikasi Mutu Greenbean Kopi Arabika Lanang Dan Biasa Menggunakan K-Nearest Neighbor Berdasarkan Bentuk. Jurnal Ilmiah SINUS, 18(2), 1-8.
Mardisa, R., Siregar, K., & Nasution, I. S. (2022). Klasifikasi Kualitas Fisik Kopi Beras Arabika Menggunakan Pengolahan Citra Dengan Metode K-Nearest Neighbor (K-NN). Jurnal ilmiah mahasiswa pertanian, 7(2), 514-522.
Ilhamsyah, I., Rahman, A. Y., & Istiadi, I. (2021). Klasifikasi Kualitas Biji Kopi Menggunakan Multilayer Perceptron Berbasis Fitur Warna LCH. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(6), 1008-1017.
Putri, D. A., Munawar, A. A., & Nasution, I. S. (2022). Klasifikasi Mutu Fisik Biji Kopi Beras Robusta menggunakan Pengolahan Citra Digital. Jurnal Ilmiah Mahasiswa Pertanian, 7(2), 490-498.
Santos, F. F. L. D., Rosas, J. T. F., Martins, R. N., Araújo, G. D. M., Viana, L. D. A., & Gonçalves, J. D. P. (2020). Quality assessment of coffee beans through computer vision and machine learning algorithms.
Janandi, R., & Cenggoro, T. W. (2020, August). An implementation of convolutional neural network for coffee beans quality classification in a mobile information system. In 2020 International Conference on Information Management and Technology (ICIMTech) (pp. 218-222). IEEE.
Hakim, M., Djatna, T., & Yuliasih, I. (2020, October). Deep learning for roasting coffee bean quality assessment using computer vision in mobile environment. In 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 363-370). IEEE.
Luis, V. A. M., Quiñones, M. V. T., & Yumang, A. N. (2022, September). Classification of Defects in Robusta Green Coffee Beans Using YOLO. In 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) (pp. 1-6). IEEE.
Redmon, J. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition.
Copyright (c) 2025 Eko Dwi Nugroho, Miranti Verdiana, Muhammad Habib Algifari, Aidil Afriansyah, Hafiz Budi Firmansyah, Alya Khairunnisa Rizkita, Richard Arya Winarta, David Gunawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).