Pembagian Task Karyawan Berdasarkan Riwayat Kerja dengan Metode Naive Bayes

  • Mustafidatun Nashihah Sekolah Tinggi Informatika dan Komputer Indonesia Malang
  • Siti Aminah Sekolah Tinggi Informatika dan Komputer Indonesia Malang
  • Rakhmad Maulidi Sekolah Tinggi Informatika dan Komputer Indonesia Malang

Abstract

Accuracy and suitability in the division of employee tasks have an important role in the division of employee tasks, in order to obtain a list of criteria that are in accordance with the abilities of employees in one division. PT. Assist Software Indonesia Pratama is currently still in manual division of tasks, namely by sorting out tasks based on features, applications, divisions, and employees who usually do the work. So that it takes a long time in the process of dividing employee tasks, one of the factors is HRD must sort out tasks based on features, applications in order to determine the division and employees who work on the task. The purpose of the research is to facilitate the division of tasks to employees in order to get a list of criteria that are in accordance with the abilities of employees in one division using the Naive Bayes method. So we need a system that can help HRD in distributing employee tasks in accordance with the division and employee capabilities. In this task distribution system using the Multinomial Naïve Bayes Classifier method as a determinant of employee task distribution. The division of employee tasks is based on the tasks that have been done by the previous employee, so that the system can perform the appropriate task division. The system can see the similarities between tasks using the Multinomial Naïve Bayes method as a consideration for determining the divisions and employees who work with the percentage accuracy of 92.5% and 82.5%.

Downloads

Download data is not yet available.

References

H. M. P. Simarmata and N. J. Panjaitan, "Pengaruh Pembagian Kerja Terhadap Prestasi Kerja Karyawan Pada Perum Bulog Sub Drivre Pematangsiantar," Jurnal Murni Sadar, 2016.

O. Somantri, "Text Mining Untuk Klasifikasi Kategori Cerita Pendek Menggunakan Naive Bayes (NB)," Jurnal Telematika, 2017.

A. Sabrani, I. G. P. W. W. W and F. Bimantoro, "Metode Multinomial Naïve Bayes Untuk Klasifikasi Artikel Online Tentang Gempa di Indonesia," JTIKA, 2020.

A. Rahman, Wiranto and A. Doewes, "Online News Classification Using Multinomial Naive," ITSMART: Jurnal Ilmiah Teknologi dan Informasi, 2017.

A. Sabrani, I. G. P. W. W. W and F. Bimantoro, "Metode Multinomial Naïve Bayes Untuk Klasifikasi Artikel Online Tentang Gempa di Indonesia," JTIKA.

R. Ilyas and M. L. Khodra, " Ekstraksi Informasi 5W1H pada Berita Online Bahasa Indonesia," Jurnal Cybermatika, 2015.

S. Aulia, "PEMANFAATAN NAÏVE BAYES UNTUK MERESPON EMOSI DARI KALIMAT BERBAHASA INDONESIA," vol. 4, 2015.

A. P. Rahmayadi, U. Enri and Purwantoro, "Klasifikasi Kinerja Asisten Laboratorium Selama Pandemi Covid-19 Menggunakan Algoritma Naïve Bayes," Journal of Applied Informatics and Computing (JAIC).

N. Salsabila, N. Sulistiyowati and T. N. Padilah, "Pencarian Pola Pemakaian Obat Menggunakan Algoritma FP-Growth," Journal of Applied Informatics and Computing (JAIC).

Published
2022-12-08
How to Cite
[1]
M. Nashihah, S. Aminah, and R. Maulidi, “Pembagian Task Karyawan Berdasarkan Riwayat Kerja dengan Metode Naive Bayes”, JAIC, vol. 6, no. 2, pp. 187-193, Dec. 2022.
Section
Articles