Public Sentiment Analysis on Demonstration Actions Using IndoBERT Based on Transfer Learning

Authors

  • I Dewa Ayu Pradnya Pratiwi Tentriajaya Universitas Udayana
  • Ni Putu Dina Agustina Universitas Udayana
  • I Gusti Ngurah Lanang Wijayakusuma Universitas Udayana

DOI:

https://doi.org/10.30871/jaic.v10i1.12116

Keywords:

BERT, IndoBERT, Sentiment Analysis, Transfer Learning, Politics, DPR

Abstract

Sentiment analysis based on language modeling plays a crucial role in mapping public perception of socio-political dynamics in Indonesia. This study aims to evaluate public sentiment toward the House of Representatives of the Republic of Indonesia (DPR RI) in response to the August 2025 demonstrations using the IndoBERT model based on transfer learning. The dataset comprises 1,815 Indonesian-language opinion texts classified into positive and negative sentiments. Due to a substantial class imbalance dominated by negative opinions, a hybrid sampling strategy combining oversampling and undersampling was employed to obtain a balanced dataset of 650 samples per class. The research methodology included text preprocessing, an 80:20 training–testing split, and fine-tuning the IndoBERT-base-p1 model. Experimental results indicate that the proposed model achieves robust and balanced performance, with an overall accuracy of 85%. Precision and F1-score for both sentiment classes reached 0.85, while recall values were 0.86 for negative sentiment and 0.85 for positive sentiment, demonstrating the model’s ability to identify both classes effectively without bias toward the majority class. Despite the dominance of negative sentiment in the original dataset, the application of data balancing techniques successfully mitigated class imbalance effects, enabling fair and proportional sentiment classification. These findings confirm that the IndoBERT-based transfer learning approach is effective in capturing public sentiment related to mass demonstrations and can provide valuable, data-driven insights for policymakers in understanding societal concerns in the digital era.

Downloads

Download data is not yet available.

References

[1] M. Fazri and A. Voutama, “Analisis Sentimen Publik Terhadap Danantara Di Media Sosial X Menggunakan NLP dan Pembelajaran Mesin,” JOISIE (Journal Of Information Systems And Informatics Engineering), Vol. 9, No. 1, Pp. 197–206, 2025, doi: 10.35145/joisie.v9i1.4924.

[2] P. Ashari, N. Mutiah, And D. Prawira, “Perbandingan Kinerja Model Deep Learning Bert Dan Gpt Dalam Analisis Sentimen Komentar Video Youtube ( Studi Kasus : Film Dirty Vote),” Jurnal Edukasi dan Penelitian Informatika, Vol. 11, No. 1, Pp. 66–75, 2025.Online.Available:http://36.95.239.66/id/eprint/3974.

[3] F. Sugandi, “Analisis Sentiment Masyarakat Indonesia Pada Media Sosial Terhadap Isu Ijazah Palsu Mantan Presiden Menggunakan Algoritma Berbasis Transformer ( BERT),” Journal of Science and Social Research, Vol. 8, No.3, Pp. 4762-4768,2025,doi:https://doi.org/10.54314/jssr.v8i3.4209.

[4] M. G. Al-Kadzim, Rasim, and Herbert, “Analisis Perubahan Sentimen Publik di Media Sosial X terhadap Konflik Palestina–Israel Menggunakan Model IndoBERT,” Digital Transformation Technology (Digitech), vol. 4, no. 2, pp. 1167–1180, Sep. 2024, doi: 10.47709/digitech.v4i2.5312.

[5] D. E. Putro, D. Juarsa, B. P. P. Hermana, B. Bagastian, And H. Sulistiani, “Analisis Sentimen Publik Terhadap ‘ Save Raja Ampat ’ Di Media Sosial Menggunakan Model Indobert,” Bulletin Of Computer Science Research, vol. 5, no. 5, pp. 1067–1075, 2025, doi: 10.47065/bulletincsr.v5i5.621.

[6] A. T. Kumara, M. Ridwan, and A. Kunaefi, “Klasifikasi Sentimen Netizen Media Sosial X terhadap Kandidat Cawapres pada Pilpres 2024 menggunakan IndoBERT,” 2024.

[7] A. Y. Pratama, G. A. Sanjaya, N. K. Lubis, And M. R. Aditya, “Analisis Sentimen Publik Terkait Danantara Menggunakan Algoritma Indobert Pada Platform Media Sosial,” Metik Jurnal,2025, doi: 10.47002/Metik.V9i1.1055.

[8] W. J. Kusoema and I. Ibrahim, "Analisis Sentimen dalam Kasus Korupsi PT. Pertamina menggunakan Metode IndoBERT dan RCNN," Jurnal Sistem Informasi (SISTEMASI), vol. 14, no. 5, pp. 2246–2257, 2025. [Online], doi: sistemasi.ftik.unisi.ac.id

[9] A. A. Qolbu, N. Fitriyati, and N. Inayah, “Performa Naïve Bayes , SVM , dan IndoBERT pada Analisis Sentimen Twitter IndiHome dengan Strategi Penanganan Data Tidak Seimbang,” vol. 814, no. 1, pp. 29–44, 2025, doi: 10.14421/fourier.2025.141.29-44.

[10] M. R. Nur, Y. Wibisono, and R. Megasari, “Analisis Sentimen dan Pemodelan Topik pada Post tentang Merek Teknologi di X Menggunakan Fine-tuning IndoBERT dan BERTopic,” Jurnal Kutechnology Sistem Informasi (JUKTISI), vol. 4, no. 2, pp. 743–750, Sep. 2025, doi: 10.62712/juktisi.v4i2.508

[11] M. Ramdan, F. R. Umbara, And R. Ilyas, “Analisis Sentimen Pengguna Aplikasi Sambara ( E-Samsat ) Jawa Barat Menggunakan Metode Indobert,” Jurnal Global Ilmiah, Vol. 2, No. 12, Pp. 1173–1182, 2025, doi: https://doi.org/10.55324/jgi.v2i12.272.

[12] L. Septian, T. Aljauza, And C. Juliane, “Analisis Sentimen Putusan Mahkamah Konstitusi Terhadap Batas Usia Capres Dan Cawapres Menggunakan Indobert," Indonesian Journal Of Computer Science, Vol. 12, No. 1, Pp. 4428–4439, 2024, doi: 10.33022/ijcs.v12i6.3614

[13] S. Jeyabharathy, A. Padmapriya, A. K. Sangaiah, and C. Zhang, “Stratified Sampling-Based Deep Learning Approach to Increase Prediction Accuracy of Unbalanced Dataset,” Electronics, vol. 12, no. 21, p. 4423, 2023, doi: 10.3390/electronics12214423

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic Minority Over-sampling Technique," Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002. [Online], doi: doi.org/10.1613/jair.953

[15] A. Fernández, S. García, F. Herrera, and N. V. Chawla,

"SMOTE for Learning from Imbalanced Data: Progress and Challenges," Journal of Artificial Intelligence Research, vol. 61, pp. 863–905, 2018. [Online], doi: 10.1613/jair.1.11192

[16] C. H. Miranda, G. Sanchez-Torres, and D. Salcedo, “Exploring the Evolution of Sentiment in Spanish Pandemic Tweets: A Data Analysis Based on a Fine Tuned BERT Architecture,” Data (Basel), vol. 8, no. 6, p. 96, May 2023. doi: 10.3390/data8060096

Downloads

Published

2026-02-10

How to Cite

[1]
I. D. A. P. P. Tentriajaya, N. P. D. Agustina, and I. G. N. L. Wijayakusuma, “Public Sentiment Analysis on Demonstration Actions Using IndoBERT Based on Transfer Learning”, JAIC, vol. 10, no. 1, pp. 969–974, Feb. 2026.

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.