Evaluation of Histogram-Based Image Enhancement Methods for Facial Images in Drowsy Driver Using No-Reference Metrics

Authors

  • Muhammad Naufal Universitas Dian Nuswantoro
  • Harun Al Azies Universitas Dian Nuswantoro
  • Farrikh Alzami Universitas Dian Nuswantoro
  • Rivaldo Mersis Brilianto Pusan National University

DOI:

https://doi.org/10.30871/jaic.v10i1.12055

Keywords:

CLAHE, Histogram Equalization, Image Enhancement, No-Reference

Abstract

Low-light facial images suffer significant quality degradation, leading to performance degradation in surveillance and face recognition systems, where conventional enhancement methods often produce over-enhancement or unnatural noise artifacts. This study compares three histogram equalization methods, namely HE, AHE, and CLAHE, for low-light facial image enhancement, with evaluation using no-reference quality assessment metrics, including NIQE, LOE, and Entropy, as well as visual analysis and histogram distribution. The results showed that AHE produced the lowest NIQE (4.96 ± 1.38) and the highest entropy (7.86 ± 0.11) but had significant noise artifacts, HE produced an overly even distribution with NIQE of 6.34 ± 1.41, while CLAHE showed the most balanced performance with the lowest LOE (0.07 ± 0.02) and the best visual quality when using the optimal clip limit in the range of 1.2-2.0, providing an optimal trade-off between contrast enhancement, naturalness preservation, and artifact minimization with computational efficiency below 1 ms.

Downloads

Download data is not yet available.

References

[1] “Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi, 2024.” [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NTEzIzI=/jumlah-kecelakaan-korban-mati-luka-berat-luka-ringan-dan-kerugian-materi.html

[2] M. Maulani, “KNKT Catat 60% Kecelakaan Kendaraan Darat karena Pengemudi Kelelahan.” [Online]. Available: https://news.detik.com/berita/d-7691062/knkt-catat-60-kecelakaan-kendaraan-darat-karena-pengemudi-kelelahan

[3] O. F. Hassan, A. F. Ibrahim, A. Gomaa, M. A. Makhlouf, and B. Hafiz, “Real-time driver drowsiness detection using transformer architectures: a novel deep learning approach,” Sci. Rep., vol. 15, no. 1, p. 17493, May 2025, doi: 10.1038/s41598-025-02111-x.

[4] M. Hashemi, A. Mirrashid, and A. Beheshti Shirazi, “Driver Safety Development: Real-Time Driver Drowsiness Detection System Based on Convolutional Neural Network,” SN Comput. Sci., vol. 1, no. 5, p. 289, Sep. 2020, doi: 10.1007/s42979-020-00306-9.

[5] W. Kim, “Low-Light Image Enhancement: A Comparative Review and Prospects,” IEEE Access, vol. 10, pp. 84535–84557, 2022, doi: 10.1109/ACCESS.2022.3197629.

[6] F. Alzami, M. Naufal, H. A. Azies, S. Winarno, and M. A. Soeleman, “Time Distributed MobileNetV2 with Auto-CLAHE for Eye Region Drowsiness Detection in Low Light Conditions,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 11, 2024, doi: 10.14569/IJACSA.2024.0151146.

[7] M. Naufal, H. Al Azies, G. A. Firmansyah, and N. M. K. Kharisma, “Penerapan Teknik Adaptive Dan Histogram Equalization Dalam Pengolahan Citra,” J. Mhs. Ilmu Komput., vol. 5, no. 1, pp. 9–18, Mar. 2024, doi: 10.24127/ilmukomputer.v5i1.5345.

[8] K. G. Dhal, A. Das, S. Ray, J. Gálvez, and S. Das, “Histogram Equalization Variants as Optimization Problems: A Review,” Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1471–1496, May 2021, doi: 10.1007/s11831-020-09425-1.

[9] Q. Wang, Z. Li, S. Zhang, N. Chi, and Q. Dai, “A versatile Wavelet-Enhanced CNN-Transformer for improved fluorescence microscopy image restoration,” Neural Netw., vol. 170, pp. 227–241, Feb. 2024, doi: 10.1016/j.neunet.2023.11.039.

[10] P. Borghesani, N. Herwig, J. Antoni, and W. Wang, “A Fourier-based explanation of 1D-CNNs for machine condition monitoring applications,” Mech. Syst. Signal Process., vol. 205, p. 110865, Dec. 2023, doi: 10.1016/j.ymssp.2023.110865.

[11] A. Balasundaram, A. Mohanty, A. Shaik, K. Pradeep, K. P. Vijayakumar, and M. S. Kavitha, “Zero-DCE++ Inspired Object Detection in Less Illuminated Environment Using Improved YOLOv5,” Comput. Mater. Contin., vol. 77, no. 3, pp. 2751–2769, 2023, doi: 10.32604/cmc.2023.044374.

[12] C. Lei and Q. Tian, “Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory,” Appl. Sci., vol. 13, no. 18, p. 10336, Sep. 2023, doi: 10.3390/app131810336.

[13] Y. Chen et al., “Generative Adversarial Networks in Medical Image augmentation: A review,” Comput. Biol. Med., vol. 144, p. 105382, May 2022, doi: 10.1016/j.compbiomed.2022.105382.

[14] C. Guo et al., “Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement,” 2020, doi: 10.48550/ARXIV.2001.06826.

[15] S. Yang et al., “A Review of Image Enhancement Technology Research,” in 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China: IEEE, Dec. 2021, pp. 715–720. doi: 10.1109/MLBDBI54094.2021.00141.

[16] W. Simoes and M. De Sá, “PSNR and SSIM: Evaluation of the Imperceptibility Quality of Images Transmitted over Wireless Networks,” Procedia Comput. Sci., vol. 251, pp. 463–470, 2024, doi: 10.1016/j.procs.2024.11.134.

[17] U. Sara, M. Akter, and M. S. Uddin, “Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study,” J. Comput. Commun., vol. 07, no. 03, pp. 8–18, 2019, doi: 10.4236/jcc.2019.73002.

[18] D. Şener and S. Güney, “Enhancing Steganography in 256×256 Colored Images with U-Net: A Study on PSNR and SSIM Metrics with Variable-Sized Hidden Images,” Rev. Comput. Eng. Stud., vol. 11, no. 2, pp. 13–29, Jun. 2024, doi: 10.18280/rces.110202.

[19] L. Rahadianti, A. Y. Azizah, and H. Deborah, “Evaluation of the quality indicators in dehazed images: Color, contrast, naturalness, and visual pleasingness,” Heliyon, vol. 7, no. 9, p. e08038, Sep. 2021, doi: 10.1016/j.heliyon.2021.e08038.

[20] B.-W. Cheon and N.-H. Kim, “Enhancement of Low-Light Images Using Illumination Estimate and Local Steering Kernel,” Appl. Sci., vol. 13, no. 20, p. 11394, Oct. 2023, doi: 10.3390/app132011394.

[21] I. Nasri, M. Karrouchi, H. Snoussi, K. Kassmi, and A. Messaoudi, “Detection and Prediction of Driver Drowsiness for the Prevention of Road Accidents Using Deep Neural Networks Techniques,” in WITS 2020, vol. 745, S. Bennani, Y. Lakhrissi, G. Khaissidi, A. Mansouri, and Y. Khamlichi, Eds., in Lecture Notes in Electrical Engineering, vol. 745. , Singapore: Springer Singapore, 2022, pp. 57–64. doi: 10.1007/978-981-33-6893-4_6.

[22] S. Agrawal, R. Panda, P. K. Mishro, and A. Abraham, “A novel joint histogram equalization based image contrast enhancement,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 4, pp. 1172–1182, Apr. 2022, doi: 10.1016/j.jksuci.2019.05.010.

[23] I. W. A. Wijaya Kusuma and A. Kusumadewi, “Penerapan Metode Contrast Stretching, Histogram Equalization Dan Adaptive Histogram Equalization Untuk Meningkatkan Kualitas Citra Medis MRI,” Simetris J. Tek. Mesin Elektro Dan Ilmu Komput., vol. 11, no. 1, pp. 1–10, Apr. 2020, doi: 10.24176/simet.v11i1.3153.

Downloads

Published

2026-02-04

How to Cite

[1]
M. Naufal, H. Al Azies, F. Alzami, and R. M. Brilianto, “Evaluation of Histogram-Based Image Enhancement Methods for Facial Images in Drowsy Driver Using No-Reference Metrics”, JAIC, vol. 10, no. 1, pp. 265–272, Feb. 2026.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.