Evaluation of Histogram-Based Image Enhancement Methods for Facial Images in Drowsy Driver Using No-Reference Metrics
DOI:
https://doi.org/10.30871/jaic.v10i1.12055Keywords:
CLAHE, Histogram Equalization, Image Enhancement, No-ReferenceAbstract
Low-light facial images suffer significant quality degradation, leading to performance degradation in surveillance and face recognition systems, where conventional enhancement methods often produce over-enhancement or unnatural noise artifacts. This study compares three histogram equalization methods, namely HE, AHE, and CLAHE, for low-light facial image enhancement, with evaluation using no-reference quality assessment metrics, including NIQE, LOE, and Entropy, as well as visual analysis and histogram distribution. The results showed that AHE produced the lowest NIQE (4.96 ± 1.38) and the highest entropy (7.86 ± 0.11) but had significant noise artifacts, HE produced an overly even distribution with NIQE of 6.34 ± 1.41, while CLAHE showed the most balanced performance with the lowest LOE (0.07 ± 0.02) and the best visual quality when using the optimal clip limit in the range of 1.2-2.0, providing an optimal trade-off between contrast enhancement, naturalness preservation, and artifact minimization with computational efficiency below 1 ms.
Downloads
References
[1] “Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi, 2024.” [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NTEzIzI=/jumlah-kecelakaan-korban-mati-luka-berat-luka-ringan-dan-kerugian-materi.html
[2] M. Maulani, “KNKT Catat 60% Kecelakaan Kendaraan Darat karena Pengemudi Kelelahan.” [Online]. Available: https://news.detik.com/berita/d-7691062/knkt-catat-60-kecelakaan-kendaraan-darat-karena-pengemudi-kelelahan
[3] O. F. Hassan, A. F. Ibrahim, A. Gomaa, M. A. Makhlouf, and B. Hafiz, “Real-time driver drowsiness detection using transformer architectures: a novel deep learning approach,” Sci. Rep., vol. 15, no. 1, p. 17493, May 2025, doi: 10.1038/s41598-025-02111-x.
[4] M. Hashemi, A. Mirrashid, and A. Beheshti Shirazi, “Driver Safety Development: Real-Time Driver Drowsiness Detection System Based on Convolutional Neural Network,” SN Comput. Sci., vol. 1, no. 5, p. 289, Sep. 2020, doi: 10.1007/s42979-020-00306-9.
[5] W. Kim, “Low-Light Image Enhancement: A Comparative Review and Prospects,” IEEE Access, vol. 10, pp. 84535–84557, 2022, doi: 10.1109/ACCESS.2022.3197629.
[6] F. Alzami, M. Naufal, H. A. Azies, S. Winarno, and M. A. Soeleman, “Time Distributed MobileNetV2 with Auto-CLAHE for Eye Region Drowsiness Detection in Low Light Conditions,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 11, 2024, doi: 10.14569/IJACSA.2024.0151146.
[7] M. Naufal, H. Al Azies, G. A. Firmansyah, and N. M. K. Kharisma, “Penerapan Teknik Adaptive Dan Histogram Equalization Dalam Pengolahan Citra,” J. Mhs. Ilmu Komput., vol. 5, no. 1, pp. 9–18, Mar. 2024, doi: 10.24127/ilmukomputer.v5i1.5345.
[8] K. G. Dhal, A. Das, S. Ray, J. Gálvez, and S. Das, “Histogram Equalization Variants as Optimization Problems: A Review,” Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1471–1496, May 2021, doi: 10.1007/s11831-020-09425-1.
[9] Q. Wang, Z. Li, S. Zhang, N. Chi, and Q. Dai, “A versatile Wavelet-Enhanced CNN-Transformer for improved fluorescence microscopy image restoration,” Neural Netw., vol. 170, pp. 227–241, Feb. 2024, doi: 10.1016/j.neunet.2023.11.039.
[10] P. Borghesani, N. Herwig, J. Antoni, and W. Wang, “A Fourier-based explanation of 1D-CNNs for machine condition monitoring applications,” Mech. Syst. Signal Process., vol. 205, p. 110865, Dec. 2023, doi: 10.1016/j.ymssp.2023.110865.
[11] A. Balasundaram, A. Mohanty, A. Shaik, K. Pradeep, K. P. Vijayakumar, and M. S. Kavitha, “Zero-DCE++ Inspired Object Detection in Less Illuminated Environment Using Improved YOLOv5,” Comput. Mater. Contin., vol. 77, no. 3, pp. 2751–2769, 2023, doi: 10.32604/cmc.2023.044374.
[12] C. Lei and Q. Tian, “Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory,” Appl. Sci., vol. 13, no. 18, p. 10336, Sep. 2023, doi: 10.3390/app131810336.
[13] Y. Chen et al., “Generative Adversarial Networks in Medical Image augmentation: A review,” Comput. Biol. Med., vol. 144, p. 105382, May 2022, doi: 10.1016/j.compbiomed.2022.105382.
[14] C. Guo et al., “Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement,” 2020, doi: 10.48550/ARXIV.2001.06826.
[15] S. Yang et al., “A Review of Image Enhancement Technology Research,” in 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China: IEEE, Dec. 2021, pp. 715–720. doi: 10.1109/MLBDBI54094.2021.00141.
[16] W. Simoes and M. De Sá, “PSNR and SSIM: Evaluation of the Imperceptibility Quality of Images Transmitted over Wireless Networks,” Procedia Comput. Sci., vol. 251, pp. 463–470, 2024, doi: 10.1016/j.procs.2024.11.134.
[17] U. Sara, M. Akter, and M. S. Uddin, “Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study,” J. Comput. Commun., vol. 07, no. 03, pp. 8–18, 2019, doi: 10.4236/jcc.2019.73002.
[18] D. Şener and S. Güney, “Enhancing Steganography in 256×256 Colored Images with U-Net: A Study on PSNR and SSIM Metrics with Variable-Sized Hidden Images,” Rev. Comput. Eng. Stud., vol. 11, no. 2, pp. 13–29, Jun. 2024, doi: 10.18280/rces.110202.
[19] L. Rahadianti, A. Y. Azizah, and H. Deborah, “Evaluation of the quality indicators in dehazed images: Color, contrast, naturalness, and visual pleasingness,” Heliyon, vol. 7, no. 9, p. e08038, Sep. 2021, doi: 10.1016/j.heliyon.2021.e08038.
[20] B.-W. Cheon and N.-H. Kim, “Enhancement of Low-Light Images Using Illumination Estimate and Local Steering Kernel,” Appl. Sci., vol. 13, no. 20, p. 11394, Oct. 2023, doi: 10.3390/app132011394.
[21] I. Nasri, M. Karrouchi, H. Snoussi, K. Kassmi, and A. Messaoudi, “Detection and Prediction of Driver Drowsiness for the Prevention of Road Accidents Using Deep Neural Networks Techniques,” in WITS 2020, vol. 745, S. Bennani, Y. Lakhrissi, G. Khaissidi, A. Mansouri, and Y. Khamlichi, Eds., in Lecture Notes in Electrical Engineering, vol. 745. , Singapore: Springer Singapore, 2022, pp. 57–64. doi: 10.1007/978-981-33-6893-4_6.
[22] S. Agrawal, R. Panda, P. K. Mishro, and A. Abraham, “A novel joint histogram equalization based image contrast enhancement,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 4, pp. 1172–1182, Apr. 2022, doi: 10.1016/j.jksuci.2019.05.010.
[23] I. W. A. Wijaya Kusuma and A. Kusumadewi, “Penerapan Metode Contrast Stretching, Histogram Equalization Dan Adaptive Histogram Equalization Untuk Meningkatkan Kualitas Citra Medis MRI,” Simetris J. Tek. Mesin Elektro Dan Ilmu Komput., vol. 11, no. 1, pp. 1–10, Apr. 2020, doi: 10.24176/simet.v11i1.3153.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Muhammad Naufal, Harun Al Azies, Farrikh Alzami, Rivaldo Mersis Brilianto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








