Analysis of the Determinants of Pelni Mobile Adoption Failure in Manokwari: A Hybrid Diffusion of Innovation and Theory of Planned Behaviour Approach

Authors

  • Yubelina Meilia Bonai Universitas Negeri Papua
  • Andreas Leonardo Sumendap Universitas Negeri Papua
  • Marlinda Sanglise Universitas Negeri Papua

DOI:

https://doi.org/10.30871/jaic.v10i1.11959

Keywords:

Technology Adoption, Developing Regions, Diffusion of Innovation, Pelni Mobile, Theory of Planned Behavior

Abstract

The adoption of digital services like Pelni Mobile in developing regions faces complex challenges. Despite offering ease of access, its adoption rate in Manokwari Regency remains low. Previous studies have not extensively explored typical barriers such as resistance to change, perceived financial costs, inconvenience, and ease of access. This study analyzes the factors behind Pelni Mobile's adoption failure by integrating the DOI and TPB approaches. Data were collected via online questionnaires from 435 participants and analyzed using SEM-PLS. Findings show that Perceived Financial Cost (P=0.000), Resistance to Change (P=0.000), and Inconvenience (P=0.000) have a significant negative influence on Behavioral Intention to Use. This means perceived costs, resistance to change, and inconvenience can reduce usage interest. Conversely, Perceived Ubiquity (P=0.000) has a significant positive influence on usage intention, and Behavioral Intention to Use positively influences Use Behavior, indicating that ease of access can encourage adoption.The implications highlight the need for strategies to reduce financial barriers, improve accessibility, employ educational approaches to address resistance, and enhance user experience. For developers and policymakers, these results serve as a guide for designing more inclusive digital services tailored to the characteristics of developing communities, particularly in contexts similar to Manokwari. Generalizing the findings to other regions must consider local social, economic, and cultural differences.

Downloads

Download data is not yet available.

References

[1] M. Z. Yang and J. I. Sihotang, “Analisis Kepuasan Pengguna Terhadap User Interface Aplikasi E-Commerce Shopee Menggunakan Metode EUCS di Jakarta Barat,” Informatics and Digital Expert (INDEX), vol. 4, no. 2, pp. 53–60, Mar. 2024, doi: 10.36423/index.v4i2.1110.

[2] D. Novita and F. Helena, “Analisis Kepuasan Pengguna Aplikasi Traveloka Menggunakan Metode Technology Acceptance Model (TAM) Dan End-User Computing Satisfaction (EUCS),” Jurnal Teknologi Sistem Informasi, vol. 2, no. 1, pp. 22–37, Apr. 2021, doi: 10.35957/jtsi.v2i1.846.

[3] T. Mellyagrina Tesyanica Ir Sumarzen Marzuki, M. STIA Dan Manajemen Kepelabuhan Barunawati Surabaya Jl Perak Barat No, P. Utara, K. Pabean Cantian, K. Surabaya, and J. Timur, “Analisis Aplikasi Pelni Mobile Terhadap Keputusan Pembelian Tiket Kapal Laut Pada Pt. Pelayaran Nasional Indonesia ( Persero ) Cabang Surabaya,” 2022.

[4] Y. A. Takke, L. F. Marini, and L. Y. Baisa, “Analisis Kepuasan Pengguna Aplikasi PELNI Mobile Menggunakan Metode Technology Acceptance Model (TAM) dan End User Computing Satisfaction (EUCS),” G-Tech: Jurnal Teknologi Terapan, vol. 8, no. 3, pp. 1921–1930, Jul. 2024, doi: 10.33379/gtech.v8i3.4700.

[5] D. I. Inan et al., “Technology anxiety and social influence towards intention to use of ride-hailing service in Indonesia,” Case Stud Transp Policy, vol. 10, no. 3, pp. 1591–1601, Sep. 2022, doi: 10.1016/j.cstp.2022.05.017.

[6] K. F. Yuen, L. Cai, G. Qi, and X. Wang, “Factors influencing autonomous vehicle adoption: an application of the technology acceptance model and innovation diffusion theory,” Technol Anal Strateg Manag, vol. 33, no. 5, pp. 505–519, 2021, doi: 10.1080/09537325.2020.1826423.

[7] E. M. Rogers, “Diffusion of Innovations, Fifth edition, New York: Free Press. page 31 - 35,” 2003.

[8] V. Venkatesh, S. M. Walton, J. Y. L. Thong, and X. Xu, “Consumer Acceptance And Use Of Information Technology: Extending The Unified Theory Of Acceptance And Use Of Technology,” 2012. [Online]. Available: http://ssrn.com/abstract=2002388

[9] R. I. McDonald and C. S. Crandall, “Social norms and social influence,” Jun. 01, 2015, Elsevier Ltd. doi: 10.1016/j.cobeha.2015.04.006.

[10] Y. P. Gnawali, P. R. Upadhayaya, B. Sharma, and S. Belbase, “Access, Efficiency, Inconvenience, and Scarcity as Issues of Online and Distance Learning in Higher Education,” European Journal of Educational Research, vol. 11, no. 2, pp. 1115–1131, Apr. 2022, doi: 10.12973/eu-jer.11.2.1115.

[11] Z. Sun, Y. Wang, H. Zhou, J. Jiao, and R. E. Overstreet, “Travel behaviours, user characteristics, and social-economic impacts of shared transportation: a comprehensive review,” International Journal of Logistics Research and Applications, vol. 24, no. 1, pp. 51–78, 2021, doi: 10.1080/13675567.2019.1663162.

[12] T. H. Tsai, W. Y. Lin, Y. S. Chang, P. C. Chang, and M. Y. Lee, “Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults,” PLoS One, vol. 15, no. 1, Jan. 2020, doi: 10.1371/journal.pone.0227270.

[13] I. Ajzen, “The Theory of Planned Behavior,” 1991.

[14] Mm. Ali, T. Hariyati, M. Yudestia Pratiwi, and S. Afifah Sekolah Tinggi Agama Islam Ibnu Rusyd Kotabumi, “Metodologi Penelitian Kuantitatif Dan Penerapan Nya Dalam Penelitian,” 2022.

[15] D. Gefen, D. W. Straub, M.-C. Boudreau, D. Gefen, D. W. Straub, and M. Boudreau, “Structural Equation Modeling And Regression: Guidelines For Research Practice Structural Equation Modeling Techniques and Regression: Guidelines For Research Practice by,” 2000.

[16] J. F. . Hair, A primer on partial least squares structural equations modeling (PLS-SEM). SAGE, 2014.

[17] Y. Haji-Othman, M. S. Sheh Yusuff, and M. N. Md Hussain, “Data Analysis Using Partial Least Squares Structural Equation Modeling (PLS-SEM) in Conducting Quantitative Research,” International Journal of Academic Research in Business and Social Sciences, vol. 14, no. 10, Oct. 2024, doi: 10.6007/IJARBSS/v14-i10/23364.

[18] J. F. . Hair, A primer on partial least squares structural equations modeling (PLS-SEM). SAGE, 2014.

[19] “Statistics textbooks in the,” 2007.

[20] C. Tam and T. Oliveira, “Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective,” Comput Human Behav, vol. 61, pp. 233–244, Aug. 2016, doi: 10.1016/j.chb.2016.03.016.

[21] I. Etikan, “Comparison of Convenience Sampling and Purposive Sampling,” American Journal of Theoretical and Applied Statistics, vol. 5, no. 1, p. 1, 2016, doi: 10.11648/j.ajtas.20160501.11.

[22] J. F. Hair, M. Sarstedt, L. Hopkins, and V. G. Kuppelwieser, “Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research,” 2014, Emerald Group Publishing Ltd. doi: 10.1108/EBR-10-2013-0128.

[23] “aekies,+Journal+manager,+203-206”.

[24] D. R. B. Raharja and S. A. Rokanta, “Analisis Faktor-Faktor Keberhasilan Sistem E-Learning Menggunakan Model Delone Dan Mclean,” Jurnal Minfo Polgan, vol. 12, no. 1, pp. 240–246, Mar. 2023, doi: 10.33395/jmp.v12i1.12359.

[25] I. D. Tyana, T. Widiharih, and I. T. Utami, “Analisis Pengaruh Kualitas Pelayanan Terhadap Kepuasan Penumpang Brt Trans Semarang Menggunakan Partial Least Square (Pls) (Studi Kasus: Mahasiswa Universitas Diponegoro),” Jurnal Gaussian, vol. 11, no. 4, pp. 591–604, Feb. 2023, doi: 10.14710/j.gauss.11.4.591-604.

[26] C. Fornell and D. F. Larcker, “Evaluating Structural Equation Models with Unobservable Variables and Measurement Error,” 1981.

[27] J. Hair, C. L. Hollingsworth, A. B. Randolph, and A. Y. L. Chong, “An updated and expanded assessment of PLS-SEM in information systems research,” Industrial Management and Data Systems, vol. 117, no. 3, pp. 442–458, 2017, doi: 10.1108/IMDS-04-2016-0130.

[28] Setiawan Assegaf, “Pengaruh Trust (Kepercayaan) dan Online Shopping Experiences (Pengalaman Berbelanja Online) terhadap Perilaku Konsumen dalam Berbelanja Online: Prespektif Konsumen di Indonesia,” Jurnal Aplikasi Manajemen (JAM), vol. Vol 13 No 3, Sep. 2015.

[29] M. S. Rosli and N. S. Saleh, “Technology enhanced learning acceptance among university students during Covid-19: Integrating the full spectrum of Self-Determination Theory and self-efficacy into the Technology Acceptance Model,” Current Psychology, vol. 42, no. 21, pp. 18212–18231, Jul. 2023, doi: 10.1007/s12144-022-02996-1.

[30] A. Saputra, D. I. Inan, R. Juita, M. Sanglise, and M. Indra, “Determinants of User Satisfaction with a Mobile Application Using the Extended Webqual 4 . 0 Method and Structural Equation Modelling : A Case of the PLN Mobile Application,” vol. 10, no. 1, pp. 39–48, 2024.

[31] M. Sarstedt and Y. Liu, “Advanced marketing analytics using partial least squares structural equation modeling (PLS-SEM),” Mar. 01, 2024, Palgrave Macmillan. doi: 10.1057/s41270-023-00279-7.

[32] A. D. Oktavia, D. I. Inan, R. N. Wurarah, and O. A. Fenetiruma, “Analisis Faktor-faktor Penentu Adopsi E-Wallet di Papua Barat: Extended UTAUT 2 dan Perceived Risk,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 587–600, Mar. 2024, doi: 10.57152/malcom.v4i2.1277.

[33] J. F. . Hair, A primer on partial least squares structural equations modeling (PLS-SEM). SAGE, 2014.

[34] N. Kock, “Common method bias in PLS-SEM: A full collinearity assessment approach.”

[35] P. E. Setiawati, D. I. Inan, R. N. Wurahrah, R. Juita, and M. Sanglise, “How The Perceived Enjoyment Effect M-Payment Adoption In West Papua Province: Delone And Mclean Information Systems Success Model,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 3, pp. 1494–1505, Aug. 2024, doi: 10.29100/jipi.v9i3.5738.

[36] W. W. Chin, “The Partial Least Squares Approach to Structural Equation Modeling,” 2015. [Online]. Available: http://www.researchgate.net/publication/232569511

[37] S. Streukens and S. Leroi-Werelds, “Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results,” European Management Journal, vol. 34, no. 6, pp. 618–632, Dec. 2016, doi: 10.1016/j.emj.2016.06.003.

[38] C. Lee, “User-Centered System Design in an Aging Society: An Integrated Study on Technology Adoption,” 2014.

[39] V. Venkatesh, S. M. Walton, J. Y. L. Thong, and X. Xu, “Consumer Acceptance And Use Of Information Technology: Extending The Unified Theory Of Acceptance And Use Of Technology,” 2012. [Online]. Available: http://ssrn.com/abstract=2002388

[40] X. Wang and Z. Cheng, “Cross-Sectional Studies: Strengths, Weaknesses, and Recommendations,” Jul. 01, 2020, Elsevier Inc. doi: 10.1016/j.chest.2020.03.012.

Downloads

Published

2026-02-05

How to Cite

[1]
Y. M. Bonai, A. L. Sumendap, and M. Sanglise, “Analysis of the Determinants of Pelni Mobile Adoption Failure in Manokwari: A Hybrid Diffusion of Innovation and Theory of Planned Behaviour Approach”, JAIC, vol. 10, no. 1, pp. 651–663, Feb. 2026.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.