Recommendation System Yogyakarta Tourism Using TF-IDF and Cosine Similarity Methods with Word Normalizer
DOI:
https://doi.org/10.30871/jaic.v10i1.11751Keywords:
TF-IDF, Cosine Similarity, Word NormalizerAbstract
The abundance of tourism information in Yogyakarta often overwhelms tourists due to non-standard text data. This research develops a tourism recommendation system using Content-Based Filtering by integrating TF-IDF and Cosine Similarity algorithms, enhanced with a Word Normalizer stage. The research method involves data preprocessing including case folding, filtering, stopword removal, and stemming combined with word normalization to standardize irregular spellings. Text feature representation is calculated using TF-IDF weighting, followed by measuring similarity between destinations through vector-based Cosine Similarity. The query testing of Pantai Parangtritis against Pantai Ngandong yielded the highest similarity score of 0.9397. System performance evaluation showed a Precision@5 of 0.84, Recall@5 of 0.10, and Mean Average Precision (MAP) of 0.81. In conclusion, strengthening the method with a Word Normalizer significantly improves the validity of top-ranked recommendations, enabling tourists to accurately find relevant attractions according to their preferences.
Downloads
References
[1] Serly Putri Jumbadi, “55 Ribu Kendaraan Masuk Jogja Saat Liburan, Kawasan Gumaton Padat,” Detik.com, Yogyakarta, Jun. 28, 2025.
[2] M. Tamam Huda and A. Permana Wibowo, “Recommendation System For Mobile Application Tour Guide And Travel Services Using Demographic Filtering And Content-Based Filtering Methods Based On Android”, [Online]. Available: https://jws.rivierapublishing.id/index.php/jws
[3] K. Samosir and F. Ginting, “A Comparative Analysis of Content-Based Filtering and TF-IDF Approaches for Enhancing Sports Recommendation Systems,” vol. 6, no. 2, pp. 90–97, 2024, [Online]. Available: http://innovatics.unsil.ac.id
[4] A. O. Rahmawati, R. Susanto, and H. Hasanah, “Sistem Rekomendasi Bursa Kerja Khusus (Bkk) Menggunakan Metode Content Based Filtering Pada Smk Tunas Bangsa,” Jurnal Informatika Teknologi Dan Sains.
[5] W. Ferbiansyah, A. Muhammad Irwan, B. Santoso, and S. Kacung, “Implementasi Metode Content Based Filtering Menggunakan Synopsis Similarity Untuk Pemilihan Anime,” Jurnal Informatika Teknologi Dan Sains, VOL. 7, NO. 2, P. 955, 2025.
[6] S. Oyadila, D. Abdullah, and A. Razi, “Implementasi Content-Based Filtering Dengan TF-IDF Dan Cosine Similarity Untuk Sistem Rekomendasi Destinasi Wisata Di Aceh Tengah,” RABIT : Jurnal Teknologi Dan Sistem Informasi Univrab, Vol. 10, NO. 2, PP. 1329–1339, Jul. 2025, doi: 10.36341/rabit.v10i2.6532.
[7] L. H. Aljihadu, “Sistem Rekomendasi Wisata Kuliner Di Gunungkidul Menggunakan Metode Content Based Filtering,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 1, Jan. 2025, doi: 10.23960/jitet.v13i1.5955.
[8] A. Dwi Aryanto, A. Primadewi, N. Agung, and A. D. Aryanto, “Rekomendasi Wisata Kabupaten Magelang menggunakan Metode Content-Based Filtering dan Location-Based Service,” JURNAL FASILKOM, vol. 15, pp. 172–78, 2025.
[9] F. Farasalsabila, E. Utami, and M. Hanafi, “Analysis Of Public Opinion On Indonesian Television Shows Using Support Vector Machine,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 10, no. 2, pp. 239–246, Mar. 2024, doi: 10.33330/jurteksi.v10i2.2935.
[10] T. Rafah Masuzzahra, K. Umam, H. Mustofa, and M. R. Handayani, “HANA: An AI Chatbot for Islamic Jurisprudence on Menstruation using SBERT and TF-IDF,” Journal of Applied Informatics and Computing (JAIC), vol. 9, no. 3, p. 1013, 2025, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[11] Yuliana, Mira, and A. Hari Kristianto, “Machine Learning Content-Based Filtering Women Empowering Recommendations On Youtube,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. XI, no. 4, pp. 2407–1811, 2025, doi: 10.33330/jurteksi.v11i4.4154.
[12] R. Saputra, Y. Pristyanto, and I. N. Fajri, “Generative AI Image Sentiment Analysis on Social Media X using TF-IDF and FastText,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[13] A. Pannadhika Putra, D. Purnami Singgih Putri, and Aak. Cahyawan Wiranatha, “Scientific Paper Recommendation System: Application of Sentence Transformers and Cosine Similarity Using arXiv Data,” Journal of Applied Informatics and Computing (JAIC), vol. 9, no. 4, 2025, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[14] G. H. Setiawan, I. Made, and B. Adnyana, “Improving Helpdesk Chatbot Performance with Term Frequency-Inverse Document Frequency (TF-IDF) and Cosine Similarity Models,” 2023. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[15] D. Septiani and I. Isabela, “SINTESIA: Jurnal Sistem dan Teknologi Informasi Indonesia Analisis Term Frequency Inverse Document Frequency (TF-IDF) Dalam Temu Kembali Informasi Pada Dokumen Teks”.
[16] G. H. Setiawan, I. Made, and B. Adnyana, “Improving Helpdesk Chatbot Performance with Term Frequency-Inverse Document Frequency (TF-IDF) and Cosine Similarity Models,” Journal of Applied Informatics and Computing (JAIC), vol. 7, no. 2, p. 252, 2023, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[17] T. Rafah Masuzzahra, K. Umam, H. Mustofa, and M. R. Handayani, “HANA: An AI Chatbot for Islamic Jurisprudence on Menstruation using SBERT and TF-IDF,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[18] T. Wahyu Intan Permadani, D. Adi Prasetya, E. Daniati, and P. Korespondens, “Sistem Rekomendasi Film Berdasarkan Genre Menggunakan Metode Content-Based Filtering dengan Algoritma Cosine Similarity,” 2025.
[19] R. Al Rasyid, D. Handayani, and U. Ningsih, “Penerapan Algoritma TF-IDF dan Cosine Similarity untuk Query Pencarian Pada Dataset Destinasi Wisata,” Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, p. 2024, 2024, doi: 10.35870/jti.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jauhar Fauzi Ulul Albab, Arif Nur Rohman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








