Comparison of Sarima and Exponential Smoothing Methods in Forecasting Exchange Rates for Farmers in Central Java Province

Authors

  • MY Teguh Sulistyono Universitas Dian Nuswantoro
  • Muhammad Naufal Annabil Universitas Dian Nuswantoro

DOI:

https://doi.org/10.30871/jaic.v9i6.11396

Keywords:

SARIMA, Exponential Smoothing, Farmer Exchange Rates, Time Series Forecasting

Abstract

This study compares the performance of the SARIMA and Exponential Smoothing (Holt-Winters) models in forecasting the Farmer Exchange Rate (NTP) for Central Java Province from 2016 to 2025. The monthly statistical data used was obtained from the Central Java Provincial Statistics Agency. The models were evaluated using MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) on test data for the period January 2016 to September 2025, while forecasting was carried out from October 2025 to December 2027. The results show that the SARIMA (1,1,1) (1,1,1,12) model has an MAE of 6.94 and an RMSE of 7.88, indicating that the model can make accurate predictions with few errors. However, the Exponential Smoothing model has a lower MAE and RMSE, implying that this model is more accurate in forecasting long-term NTP. Both models show comparable seasonal trends, with Exponential Smoothing being more stable and sensitive to seasonal changes.  This study also proposes the use of alternative forecasting approaches, such as ARIMAX, VAR, or machine learning to improve the accuracy of future forecasts.  The results of this study can be used to develop agricultural policies that maintain food price stability, improve farmer welfare, and predict future inflation fluctuations.

Downloads

Download data is not yet available.

References

[1] N. D. Andriatmoko, S. Muljaningsih, F. E. Supriatin, and N. Tausikal, “Nilai Tukar Petani (NTP) Kabupaten Trenggalek tahun 2022,” J. Ekon. Pertan. dan Agribisnis, vol. 8, no. 3, pp. 1222–1237, 2024.

[2] L. S. M. Indah, W. A. Zakaria, and D. M. Sari, “Pengaruh Inflasi, PDRB, Suku Bunga, dan Tenaga Kerja terhadap Nilai Tukar Petani Provinsi Lampung,” J. Ekon. Pertan. dan Agribisnis, vol. 7, no. 3, pp. 1099–1111, 2023.

[3] “Nilai Tukar Petani (NTP) Provinsi Jawa Tengah, 2014–2024,” Badan Pusat Statistik Provinsi Jawa Tengah. Accessed: Sep. 01, 2025. [Online]. Available: https://jateng.bps.go.id/id/statistics-table/2/ODYjMg==/nilai-tukar-petani.html

[4] R. D. D. Mangiwa, R. Siregar, S. D. Sari, and N. Agustina, “Application of the Arima Model in Forecasting Ethereum Prices,” Param. J. Mat. Stat. dan Ter., vol. 4, no. 1, pp. 81–94, 2025, doi: 10.30598/parameterv4i1pp81-94.

[5] M. Y. T. Sulistyono, E. S. Pane, E. M. Yuniarno, and M. H. Purnono, “Correlation Analysis Approach Between Features and Motor Movement Stimulus for Stroke Severity Classification of EEG Signal Based on Time, Frequency, and Signal Decomposition Domain,” J. Nas. Pendidik. Tek. Inform. JANAPATI, vol. 13, no. 3, pp. 597–611, 2024, doi: 10.22266/ijies2024.1231.91.

[6] A. R. Wahyuningtyas, W. P. Pratiwii, R. Wasono, and T. W. Utami, “Peramalan Indeks Harga Konsumen Kabupaten Banyumas dengan Metode SARIMA,” J. Litbang Edusaintech, vol. 3, no. 1, pp. 56–60, 2021.

[7] M. Syafar et al., “Perbandingan Metode Sarima Dan Exponential Smoothing Dalam Memprediksi Curah Hujan Di Kabupaten Bangka Tengah,” J. Fraction, vol. 4, no. 2, pp. 41–48, 2024.

[8] A. Prayuda and I. Pratama, “Prediksi Jumlah Kedatangan Wisatawan Mancanegara di Indonesia Berdasarkan Pintu Masuk Kedatangan Udara,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 2, pp. 232–241, 2024, doi: 10.36341/rabit.v9i2.4787.

[9] F. A. N. Fauzi, R. Santoso, and D. A. I. Maruddani, “Pemodelan Data Time Series Menggunakan Pendekatan Regresi Polinomial Lokal pada Data Harga Saham MDKA,” Indones. J. Appl. Stat., vol. 6, no. 2, pp. 186–197, 2023, doi: 10.13057/ijas.v6i2.80118.

[10] A. Roza, E. S. Violita, and S. Aktivani, “Study of Inflation using Stationary Test with Augmented Dickey Fuller & Phillips-Peron Unit Root Test (Case in Bukittinggi City Inflation for 2014-2019),” EKSAKTA Berk. Ilm. Bid. MIPA, vol. 23, no. 02, pp. 106–116, 2022, doi: 10.24036/eksakta/vol23-iss02/303.

[11] L. Mauditia, N. Imro’ah, and W. Andani, “Prediksi Jumlah Permintaan Darah UTD PMI Kota Pontianak Menggunakan ARIMA-Kalman Filter,” Indones. J. Appl. Stat., vol. 7, no. 1, pp. 73–86, 2024, doi: 10.13057/ijas.v7i1.85958.

[12] P. A. Andila, “Penerapan Model Arma (Autoregressive Moving Average) Dalam Meramalkan Harga Cabai di Kota Bukittinggi,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 2, pp. 223–231, 2025, doi: 10.23960/jitet.v13i2.6148.

[13] S. Halim, B. Mulyawan, and M. D. Lauro, “Prediksi Jumlah Wisatawan Mancanegara ke Indonesia Berdasarkan Kebangsaan Menggunakan SARIMA,” J. Ilmu Komput. dan Sist. Inf., vol. 13, no. 1, pp. 1–8, 2025.

[14] R. Kruba, H. Sofyan, D. Marshanda, D. Rizki, N. Syazana, and Rahmadhania, “Peramalan Saham Indofood di Indonesia Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA),” J. Manaj. DAN Keuang., vol. 4, no. 1, pp. 102–117, 2025, doi: 10.32665/statkom.v4i1.4424.

[15] H. N. D. Fortuna and A. Oktaviarina, “Peramalan Jumlah Produksi Padi Kabupaten Ngawi Menggunakan Metode SARIMA-ARCH,” MATHunesa J. Ilm. Mat., vol. 12, no. 2, pp. 418–427, 2024, doi: 10.26740/mathunesa.v12n2.p418-427.

[16] I. R. Amalia, T. Widiharih, and Tarno, “Holt Winters Exponential Smoothing Untuk Meramalkan Produk Domestik Bruto Di Indonesia,” J. Gaussian, vol. 13, no. 1, pp. 219–229, 2024, doi: 10.14710/j.gauss.13.1.219-229.

[17] A. A. Asmaradana and E. Widodo, “Penerapan Metode Peramalan Double Exponential Smoothing Pada Indeks Harga Konsumen Kota Yogyakarta,” Emerg. Stat. Data Sci. J., vol. 1, no. 1, pp. 30–36, 2023.

[18] R. D. Syah, “Performa Algoritma User K-Nearest Neighbors pada Sistem Rekomendasi di Tokopedia,” J. Inform. Univ. Pamulang, vol. 5, no. 3, pp. 302–306, 2020, doi: 10.32493/informatika.v5i3.6312.

[19] L. S. Ihzaniah, A. Setiawan, and R. W. N. Wijaya, “Perbandingan Kinerja Metode Regresi K-Nearest Neighbor dan Metode Regresi Linear Berganda pada Data Boston Housing,” Jambura J. Probab. Stat., vol. 4, no. 1, pp. 17–29, 2023, doi: 10.34312/jjps.v4i1.18948.

[20] A. Widianti and I. Pratama, “Penanganan Missing Values dan Prediksi Data Timbunan,” RABIT J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 2, pp. 242–251, 2024.

Downloads

Published

2025-12-07

How to Cite

[1]
M. T. Sulistyono and M. N. Annabil, “Comparison of Sarima and Exponential Smoothing Methods in Forecasting Exchange Rates for Farmers in Central Java Province”, JAIC, vol. 9, no. 6, pp. 3490–3498, Dec. 2025.

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.