Real-Time Arrow Detection and Scoring on Archery Targets Using YOLOv8 with Euclidean Distance-Based Zone Estimation

Authors

  • Safri Adam Politeknik Negeri Pontianak
  • Novi Aryani Fitri Politeknik Negeri Pontianak
  • Sarah Bibi Politeknik Negeri Pontianak
  • Muhammad Ridhwan Sufandi Politeknik Negeri Pontianak

DOI:

https://doi.org/10.30871/jaic.v9i6.11086

Keywords:

computer vision, euclidean distance, archery, cnn, yolo v8

Abstract

The current study aims to create an automated scoring system for archery target board using computer vision technologies. As archery has develop from a traditional practice to a competitive activity, the scoring procedures have become a crucial element. While the current manual scoring procedures are fallible and can be challenging for organizers. This study offers a solution to this issue by using YOLO v8 (You Only Look Once) architecture for real- time arrow recognition and scoring. The development process consists of dataset collecting, picture pre-processing, model training and implementation using 2 photos of the target boards with arrows. The computer processes the scores by calculating the distance from the center of the arrow to the selected scoring zones using Euclidean distance. System testing established a baseline accuracy of 67%. While users noted the system's processing efficiency (speed), this accuracy level highlights significant room for improvement. The results demonstrate the potential for applying computer vision to automate the archery scoring system, while simultaneously emphasizing the critical need for advanced model performance enhancements. This study serves as a preliminary step in exploring automated sport technology, expected to contribute to future refinements of the archery scoring system.

Downloads

Download data is not yet available.

References

[1] L. L. González and E. Fontijn, “Unveiling the Legacy of Bronze Age Arrow Weapons in Southeast Asia: Function, Technology, and Cultural Significance,” J. Ilmu Pendidik. dan Hum., vol. 12, no. 1, pp. 31–42, Jan. 2023, doi: 10.35335/jiph.v12i1.29.

[2] S. Muslim, “Mengenal Olahraga Panahan,” Widina Bhakti Persada Bandung, vol. 3, no. 1, pp. 10–27, 2023, [Online]. Available: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

[3] Perpani, “Tentang perpani [Official Perpani].” Accessed: Jul. 02, 2023. [Online]. Available: https://www.indonesiaarchery.org/tentang-perpani

[4] Yunita Fella Suffa, Kajian Filosofi Perkembangan Olahraga Panahan Indonesia (Studi Di Museum Olahraga Nasional), 1st Ed. Semarang: Program Studi Pendidikan Olahraga Pascasarjana Universitas Negeri Semarang, 2018.

[5] F. N. M. Salleh, M. R. S. Txi, and W. N. W. Ahmad, “Comparative Characteristics of Psychophysiological and Shooting Performance Between Intermediate and Elite Compound Archers,” Ann. Appl. Sport Sci., vol. 11, no. 4, 2023, doi: 10.61186/aassjournal.1285.

[6] H. Ertan, B. Kentel, S. T. Tümer, and F. Korkusuz, “Activation patterns in forearm muscles during archery shooting,” Hum. Mov. Sci., vol. 22, no. 1, pp. 37–45, 2003, doi: 10.1016/S0167-9457(02)00176-8.

[7] İ. E. Kolayis, M. Çilli, H. Ertan, and J. A. Knicker, “Assessment of Target Performance in Archery,” Procedia - Soc. Behav. Sci., vol. 152, pp. 451–456, Oct. 2014, doi: 10.1016/j.sbspro.2014.09.230.

[8] H. Ma and M. G. Madden, “Automatic Archery Scoring System Using Deep Learning and Image Processing,” Irish Mahine Vis. Image Process. Conf. 2023, 2023, doi: 10.5281/zenodo.8220337.

[9] A. Rodríguez-Ramos et al., “Frontal penetrating arrow injury: A case report,” World J. Clin. Cases, vol. 11, no. 17, pp. 4117–4122, Jun. 2023, doi: 10.12998/wjcc.v11.i17.4117.

[10] H. Humaid et al., “Validity of the scoring system technology for detecting points in archery,” J. Phys. Educ. Sport, vol. 21, no. 3, pp. 1520–1524, 2021, doi: 10.7752/jpes.2021.03193.

[11] A. Qohar, R. Akbar, and A. Hendriawan, “Automatic Score in Archery Target Using Simple Image Processing Method,” pp. 488–492, 2023, doi: 10.5220/0011816400003575.

[12] T. T. Zin, I. Oka, T. Sasayama, S. Ata, H. Watanabe, and H. Sasano, “Image Processing Approach to Automatic Scoring System for Archery Targets,” in 2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IEEE, Oct. 2013, pp. 259–262. doi: 10.1109/IIH-MSP.2013.73.

[13] J. Rudzinski and M. Luckner, “Low–Cost Computer Vision Based Automatic Scoring of Shooting Targets,” Int. Conf. Knowledge-Based Intell. Inf. Eng. Syst., vol. 7828, pp. 185–195, 2013, doi: 10.1007/978-3-642-37343-5_19.

[14] C.-Y. Hung, B. C. Jiang, and C.-C. Wang, “Evaluating Machine Learning Classification Using Sorted Missing Percentage Technique Based on Missing Data,” Appl. Sci., vol. 10, no. 14, p. 4920, Jul. 2020, doi: 10.3390/app10144920.

[15] R. Parag, A. J. Knobbe, and D. M. Meeng, “Computer Science & Advanced Data Analytics Sequential Recognition And Scoring Of Archery Shots,” 2017, [Online]. Available: www.liacs.leidenuniv.nl

[16] B. Xu, H. Lin, Y. Lin, L. Yang, and K. Xu, “Improving Pseudo-relevance Feedback with Neural Network-based Word Representations,” IEEE Access, vol. 6, 2018, doi: 10.1109/ACCESS.2018.2876425.

[17] D. Lian, “Deep learning in sports skill learning: a case study and performance evaluation,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 10, Apr. 2024, doi: 10.4108/eetpht.10.5809.

[18] A. R. Irawati, D. Kurniawan, Y. T. Utami, and R. Taufik, “An Exploration of TensorFlow-Enabled Convolutional Neural Network Model Development for Facial Recognition : Advancements in Student Attendance System,” vol. 11, no. 2, pp. 413–428, 2024, doi: 10.15294/sji.v11i2.3585.

[19] G. Plastiras, C. Kyrkou, and T. Theocharides, “Efficient ConvNet-based Object Detection for Unmanned Aerial Vehicles by Selective Tile Processing,” in Proceedings of the 12th International Conference on Distributed Smart Cameras, New York, NY, USA: ACM, Sep. 2018, pp. 1–6. doi: 10.1145/3243394.3243692.

[20] M. Yaseen, “What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector,” Sep. 2024, [Online]. Available: 2409.07813

[21] J. A. Callaway and A. S. Broomfield, “Inter-Rater Reliability and Criterion Validity of Scatter Diagrams as an Input Method for Marksmanship Analysis : Computerised Notational Analysis for Archery Inter-Rater Reliability and Criterion Validity of Scatter Diagrams as,” Int. J. Perform. Anal. Sport ISSN, vol. 8668, no. December, 2017, doi: 10.1080/24748668.2012.11868601.

[22] R. Ahmad, S. Naz, and I. Razzak, “Efficient skew detection and correction in scanned document images through clustering of probabilistic hough transforms,” Pattern Recognit. Lett., vol. 152, pp. 93–99, Dec. 2021, doi: 10.1016/j.patrec.2021.09.014.

[23] K. W. Goh et al., “Comparison of Activation Functions in Convolutional Neural Network for Poisson Noisy Image Classification,” Emerg. Sci. J., vol. 8, no. 2, pp. 592–602, 2024, doi: 10.28991/ESJ-2024-08-02-014.

[24] I. A. Prasetya, F. Sukandiarsyah, N. A. Fitri, and S. Adam, “Klasifikasi Kualitas Buah Jeruk Menggunakan Computer Vision Dengan Arsitektur Yolo V8,” J. Pendidik. Inform. dan Sains, vol. 13, no. 2, pp. 187–201, 2024, doi: 10.31571/saintek.v9i1.

[25] T. Tuswan et al., “Artificial intelligence-based ship hull plate corrosion monitoring using Convolutional Neural Network (CNN): comparison of YOLOv8 and Detectron2 architecture models,” Sh. Technol. Res., pp. 1–11, Sep. 2024, doi: 10.1080/09377255.2024.2397608.

[26] S. S. Project, Archery Rules (2023), Shooting S. Texas A$M Agrilife Extension, 2023. [Online]. Available: https://texas4-h.tamu.edu/wp-content/uploads/shooting_sports_rules_archery.pdf

[27] World Archery, “FITA Rules and Constitution: BOOK 3 - Target Archery.” [Online]. Available: https://www.worldarchery.sport/rulebook/article/2551

[28] J. T. S. Phang, D. H. Chiam, K. H. Lim, and B. A. Lease, “Two-Stage Computer Vision Assisted Automatic Archery Scoreboard Scoring System,” in TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON), IEEE, Oct. 2023, pp. 987–991. doi: 10.1109/TENCON58879.2023.10322363.

[29] T. T. Zin, I. Oka, T. Sasayama, S. Ata, H. Watanabe, and H. Sasano, “Image processing approach to automatic scoring system for archery targets,” Proc. - 2013 9th Int. Conf. Intell. Inf. Hiding Multimed. Signal Process. IIH-MSP 2013, pp. 25–262, 2013, doi: 10.1109/IIH-MSP.2013.73.

[30] D. D. Ligutan, A. C. Abad, M. Cabatuan, C. Llorente, and E. P. Dadios, “FPGA implementation of archery target detection using color sequence recognition algorithm,” Int. J. Recent Technol. Eng., vol. 8, no. 2 Special Issue 8, pp. 1391–1397, 2019, doi: 10.35940/ijrte.B1073.0882S819.

[31] T. Ogasawara, H. Fukamachi, K. Aoyagi, S. Kumano, H. Togo, and K. Oka, “Archery Skill Assessment Using an Acceleration Sensor,” IEEE Trans. Human-Machine Syst., vol. 51, no. 3, pp. 221–228, Jun. 2021, doi: 10.1109/THMS.2020.3046435.

[32] M. Butt, N. Glas, J. Monsuur, R. Stoop, and A. de Keijzer, “Application of YOLOv8 and Detectron2 for Bullet Hole Detection and Score Calculation from Shooting Cards,” AI, vol. 5, no. 1, pp. 72–90, Dec. 2023, doi: 10.3390/ai5010005.

[33] W. Mcnally, P. Walters, K. Vats, A. Wong, and J. Mcphee, “DeepDarts : Modeling Keypoints as Objects for Automatic Scorekeeping in Darts using a Single Camera”.

[34] J. Hao, X. Gao, Y. Liu, and Z. Han, “Acquisition Method of User Requirements for Complex Products Based on Data Mining,” Sustainability, vol. 15, no. 9, p. 7566, May 2023, doi: 10.3390/su15097566.

[35] Y. P. W. Prasetyo, “Image Compression Using Method On Dct (Discrete Cosine Transform) Low Resolution Camera,” Int. J. Educ. Soc. Sci. Res., vol. 04, no. 03, pp. 18–30, 2021, doi: 10.37500/IJESSR.2021.4302.

[36] Y. Said and Y. A. Alsariera, “Hardware Implementation of a Deep Learning-based Model for Image Quality Assessment,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 3, pp. 13815–13821, Jun. 2024, doi: 10.48084/etasr.7194.

[37] Y. Li, C. Zhang, R. Cheng, Y. Xu, P. Li, and H. Ma, “Automatic Target-scoring Model based on Image Processing,” in 2022 9th International Conference on Digital Home (ICDH), IEEE, Oct. 2022, pp. 25–30. doi: 10.1109/ICDH57206.2022.00011.

[38] J. Valadi, K. P. Singh, M. Ojha, and P. Siarry, Eds., Advanced Machine Learning with Evolutionary and Metaheuristic Techniques. in Computational Intelligence Methods and Applications. Singapore: Springer Nature Singapore, 2024. doi: 10.1007/978-981-99-9718-3.

[39] N. Gupta et al., “Data Quality for Machine Learning Tasks,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, New York, NY, USA: ACM, Aug. 2021, pp. 4040–4041. doi: 10.1145/3447548.3470817.

[40] A. Jain et al., “Overview and Importance of Data Quality for Machine Learning Tasks,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA: ACM, Aug. 2020, pp. 3561–3562. doi: 10.1145/3394486.3406477.

[41] R. Mygushchenko, O. Kropachek, I. Korzhov, and T. Baraniuk, “Obtaining Mathematical Models Of Multi-Zone Technological Units Through Practical Identification,” Bull. Natl. Tech. Univ. “KhPI”. Ser. Hydraul. Mach. Hydraul. units, no. 1, pp. 8–14, Nov. 2022, doi: 10.20998/2411-3441.2022.1.02.

[42] M. Bodini, “Generative Artificial Intelligence and Regulations: Can We Plan a Resilient Journey Toward the Safe Application of Generative Artificial Intelligence?,” Societies, vol. 14, no. 12, p. 268, Dec. 2024, doi: 10.3390/soc14120268.

Downloads

Published

2025-12-09

How to Cite

[1]
S. Adam, N. A. Fitri, S. Bibi, and M. R. Sufandi, “Real-Time Arrow Detection and Scoring on Archery Targets Using YOLOv8 with Euclidean Distance-Based Zone Estimation”, JAIC, vol. 9, no. 6, pp. 3669–3680, Dec. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.