Comparison of Support Vector Machine (SVM) and Random Forest Algorithms in the Analysis of SOcial Media X User Sentiment Towards the TNI Bill

Authors

  • Nur Rochmawati Universitas Islam Nahdlatul Ulama Jepara
  • Akhmad Khanif Zyen Universitas Islam Nahdlatul Ulama Jepara
  • Nur Aeni Widiastuti Universitas Islam Nahdlatul Ulama Jepara

DOI:

https://doi.org/10.30871/jaic.v9i5.10883

Keywords:

Sentiment Analysis, Social Media X, TNI Bill, Support Vector Machine, Random Forest.

Abstract

The rapid advancement of information technology has enabled the public to openly express their views through social media, including on strategic national issues such as the Draft Law on the Indonesian National Armed Forces (RUU TNI). This study aims to map public sentiment toward the RUU TNI and to compare the effectiveness of two popular sentiment analysis algorithms, Support Vector Machine (SVM) and Random Forest (RF). A total of 525 relevant tweets collected between February and May 2025 were analyzed and classified into three sentiment categories: positive, negative, and neutral. The results reveal that neutral opinions dominate at 81.4%, followed by negative sentiments at 11.1% and positive sentiments at 7.4%. The performance comparison shows that SVM achieved an accuracy of 92%, outperforming RF which obtained 91%. These findings highlight that strategic defense issues tend to generate predominantly informative public opinions, while critical voices show an increasing trend as the discourse evolves. The novelty of this study lies in the application of three-class sentiment classification and the comparative evaluation of SVM and RF within the domain of defense policy. This research contributes to the academic discourse by extending sentiment analysis beyond electoral and marketing topics, while also providing practical insights for policymakers in understanding and responding to public aspirations more effectively.

Downloads

Download data is not yet available.

References

[1] K. U. Ariawan, “Penerapan Iot Untuk Sistem Kendali Jarak Jauh Peralatan Listrik Rumah Tangga Berbasis Raspberry Pi.”

[2] D. A. T. Prabowo, M. D. Setyayudha, and R. S. Dewi, “Implementasi Intelligent IoT Gateway Sebagai Pengendali Jarak Jauh Pada Raspberry Pi Berbasis OpenWrt,” JURIKOM (Jurnal Riset Komputer), vol. 7, no. 1, p. 104, Feb. 2020, doi: 10.30865/jurikom.v7i1.1882.

[3] M. Hablul Barri and B. Aji Pramudita, “ELECTROPS Jurnal Ilmiah Teknik Elektro Sistem Kendali dan Pemantauan Alat Listrik Rumah Berbasis Internet of Things (IoT) Menggunakan Aplikasi Blynk.” [Online]. Available: http://e-journals.unmul.ac.id/index.php/TE

[4] A. Ferdita Nugraha, R. Faticha, A. Aziza, and Y. Pristyanto, “Penerapan metode Stacking dan Random Forest untuk Meningkatkan Kinerja Klasifikasi pada Proses Deteksi Web Phishing,” vol. 7, no. 1.

[5] A. Andika, S. Syarli, and C. R. Sari, “Data Mining Klasifikasi Kelulusan Mahasiswa Menggunakan Metode Naïve Bayes,” Journal Peqguruang: Conference Series, vol. 4, no. 1, p. 423, May 2022, doi: 10.35329/jp.v4i1.2358.

[6] A. Ferdita Nugraha, R. Faticha, A. Aziza, and Y. Pristyanto, “Penerapan metode Stacking dan Random Forest untuk Meningkatkan Kinerja Klasifikasi pada Proses Deteksi Web Phishing,” vol. 7, no. 1.

[7] A. Ulfa, D. Winarso MKom, and E. Arribe MMSi, “Sistem Rekomendasi Jurusan Kuliah Bagi Calon Mahasiswa Baru Menggunakan Algoritma C4.5 (Studi Kasus : Universitas Muhammadiyah Riau)”.

[8] I. Kurniawan, D. Cahya Putri Buani, W. Apriliah, R. Amegia Saputra, and P. Korespondensi, “Implementasi Algoritma Random Forest Untuk Menentukan Penerima Bantuan Raskin Implementation Of Random Forest Algorithm For Determining Recipients Of Raskin,” vol. 10, no. 2, pp. 421–428, 2023, doi: 10.25126/jtiik.202396225.

[9] E. M. Thoriq, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Opini Publik pada Media Sosial Twitter terhadap Vaksin Covid-19 menggunakan Algoritma Support Vector Machine dan Term Frequency-Inverse Document Frequency,” 2021. [Online]. Available: http://j-ptiik.ub.ac.id

[10] D. B. Saputra, V. Atina, F. E. Nastiti, and F. I. Komputer, “Penerapan Model Crisp-Dm Pada Prediksi Nasabah Kredit Menggunakan Algoritma Random Forest,” 2024. [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/indexDwiBagusSaputra|http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index|

[11] M. Samantri, “Perbandingan Algoritma Support Vector Machine dan Random Forest untuk Analisis Sentimen Terhadap Kebijakan Pemerintah Indonesia Terkait Kenaikan Harga BBM Tahun 2022,” Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, p. 2024, 2024, doi: 10.35870/jti.

[12] I. Septiana and D. Alita, “Perbandingan Random Forest dan SVM dalam Analisis Sentimen Quick Count Pemilu 2024,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 3, pp. 224–233, Dec. 2024, doi: 10.30591/jpit.v9i3.6640.

[13] J. Friadi, and D. E. Kurniawan, "Analisis Sentimen Ulasan Wisatawan Terhadap Alun-Alun Kota Batam: Perbandingan Kinerja Metode Naive Bayes dan Support Vector Machine," Jurnal Sistem Informasi Bisnis, vol. 14, no. 4, pp. 403-407, Oct. 2024. https://doi.org/10.21456/vol14iss4pp403-407.

[14] M. Dimas Lutfiyanto and E. B. Setiawan, “Expansion Feature dengan Word2Vec untuk Analisis Sentimen pada Opini Politik di Twitter dengan Klasifikasi Support Vector Machine, Naïve Bayes, dan Random Forest.”

[15] F. Abdusyukur, “Penerapan Algoritma Support Vector Machine (SVM) Untuk Klasifikasi Pencemaran Nama Baik Di Media Sosial Twitter,” KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 1, 2023.

[16] A. Rahman Azis, “Analisis Komparasi Algoritma Machine Learning dalam Prediksi Performa Akademik Mahasiswa: Literature Review,” Jurnal Ilmu Komputer dan Informatika (JIKI), vol. 4, no. 2, pp. 143–150, 2024, doi: 10.54082/jiki.212.

[17] A. Farhan and A. Y. Rahman, “Analisis Sentimen Ulasan Aplikasi Identitas Kependudukan Digital Di Google Play Store Dengan Bert,” 2025.

[18] Mochammad Enrique Lazuardi Ramadany, Dyiono Dyiono, N. R. Yusrilfa Trisyayanti, and A. Sucipto, “Deteksi Objek Tongkat Pintar Menggunakan YOLOv5 Berbasis Odroid,” Jurnal Ilmiah Research And Development Student, vol. 3, no. 1, pp. 256–265, Jan. 2025, doi: 10.59024/jis.v3i1.1136.

Downloads

Published

2025-10-19

How to Cite

[1]
N. Rochmawati, A. K. Zyen, and N. A. Widiastuti, “Comparison of Support Vector Machine (SVM) and Random Forest Algorithms in the Analysis of SOcial Media X User Sentiment Towards the TNI Bill”, JAIC, vol. 9, no. 5, pp. 2854–2860, Oct. 2025.

Similar Articles

<< < 39 40 41 

You may also start an advanced similarity search for this article.