Impact of SMOTE and ADASYN on Class Imbalance in Metabolic Syndrome Classification Using Random Forest Algorithm

Authors

  • Lutfiana Deka Nurhayati Universitas Amikom Yogyakarta
  • Majid Rahardi Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i5.10657

Keywords:

ADASYN, Metabolic Syndrome, SMOTE, Random Forest

Abstract

Metabolic Syndrome is a collection of medical conditions that can increase the risk of stroke, cardiovascular disease, and type 2 diabetes. Early detection of this condition requires a machine learning model capable of accurate classification to support timely treatment. However, class imbalance in data often hampers the performance of classification algorithms, particularly in recognizing minority classes, namely individuals diagnosed with Metabolic Syndrome. This study aims to analyze the effect of applying the SMOTE and ADASYN data balancing techniques in classifying Metabolic Syndrome using the Random Forest algorithm. These algorithms were chosen for their ability to produce accurate predictions, although their performance can decline when faced with imbalanced class distributions. The results showed that the model without data balancing techniques achieved 86% accuracy with a minority class recall of 75%. The application of SMOTE increased accuracy to 91% and recall to 93%, while ADASYN achieved 92% accuracy and a minority class recall of 95%. These findings indicate that the ADASYN technique combined with the Random Forest algorithm provides significant performance improvements in the classification of Metabolic Syndrome on imbalanced data.

Downloads

Download data is not yet available.

References

[1] R. Zeltser, Supreeya Swarup, Intisar Ahmed, Yulia Grigorova, “Metabolic Syndrome,” in StatPearls, StatPearls Publishing, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK459248/

[2] and B. I. National Heart, Lung, “What Is Metabolic Syndrome?,” May 18, 2022. [Online]. Available: https://www.nhlbi.nih.gov/health/metabolic-syndrome

[3] S. M. Mohamed, M. A. Shalaby, R. A. El-Shiekh, H. A. El-Banna, S. R. Emam, and A. F. Bakr, “Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches,” Food Chem. Adv., vol. 3, p. 100335, Dec. 2023, doi: 10.1016/J.FOCHA.2023.100335.

[4] M. F. Dwi Yulianto, T. Y. Miko Wahyono, and H. Helda, “Sindrom Metabolik dan Kejadian Stroke pada Penduduk Berusia ≥ 15 Tahun di Indonesia: Analisis Data Riskesdas 2018,” J. Epidemiol. Kesehat. Indones., vol. 7, no. 1, p. 59, 2023, doi: 10.7454/epidkes.v7i1.6959.

[5] F. Fadmadika et al., “Pengaruh smote terhadap performa algoritma random forest dan algoritma gradient boosting dalam memprediksi penyakit stroke,” vol. 7, pp. 837–846, 2024, doi: 10.37600/tekinkom.v7i2.1575.

[6] R. A. Nurdian, Mujib Ridwan, and Ahmad Yusuf, “Komparasi Metode SMOTE dan ADASYN dalam Meningkatkan Performa Klasifikasi Herregistrasi Mahasiswa Baru,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 24–32, 2022, doi: 10.28932/jutisi.v8i1.4004.

[7] F. Sholekhah, A. D. Putri, R. Rahmaddeni, and L. Efrizoni, “Perbandingan Algoritma Naïve Bayes dan K-Nearest Neighbors untuk Klasifikasi Metabolik Sindrom,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 507–514, 2024, doi: 10.57152/malcom.v4i2.1249.

[8] V. No, R. Irfannandhy, L. B. Handoko, and N. Ariyanto, “Edumatic : Jurnal Pendidikan Informatika Analisis Performa Model Random Forest dan CatBoost dengan Teknik SMOTE dalam Prediksi Risiko Diabetes,” vol. 8, no. 2, pp. 714–723, 2024, doi: 10.29408/edumatic.v8i2.27990.

[9] F. A. E. Putri, “Pengaruh penanganan ketidakseimbangan kelas pada dataset penyakit stroke terhadap performa Algoritma Random Forest,” Universitas Islam Negeri Maulana Malik Ibrahim, 2024. [Online]. Available: http://etheses.uin-malang.ac.id/id/eprint/70971

[10] D. Benaya, “Implementasi Random Forest dalam Klasifikasi Kanker Paru-Paru,” JOINTER J. Informatics Eng., vol. 5, no. 01, pp. 27–31, 2024, doi: 10.53682/jointer.v5i01.331.

[11] N. G. Ramadhan, “Comparative Analysis of ADASYN-SVM and SMOTE-SVM Methods on the Detection of Type 2 Diabetes Mellitus,” Sci. J. Informatics, vol. 8, no. 2, pp. 276–282, 2021, doi: 10.15294/sji.v8i2.32484.

[12] C. Kaope and Y. Pristyanto, “The Effect of Class Imbalance Handling on Datasets Toward Classification Algorithm Performance,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 2, pp. 227–238, 2023, doi: 10.30812/matrik.v22i2.2515.

[13] C. Herdian, A. Kamila, and I. G. Agung Musa Budidarma, “Studi Kasus Feature Engineering Untuk Data Teks: Perbandingan Label Encoding dan One-Hot Encoding Pada Metode Linear Regresi,” Technol. J. Ilm., vol. 15, no. 1, p. 93, 2024, doi: 10.31602/tji.v15i1.13457.

[14] T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining,” Inf., vol. 14, no. 1, 2023, doi: 10.3390/info14010054.

[15] A. Syukron, S. Sardiarinto, E. Saputro, and P. Widodo, “Penerapan Metode Smote Untuk Mengatasi Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung,” J. Teknol. Inf. dan Terap., vol. 10, no. 1, pp. 47–50, 2023, doi: 10.25047/jtit.v10i1.313.

[16] A. A. G. W. S. Erlangga, I. G. A. Gunadi, and I. M. G. Sunarya, “Kombinasi Oversampling dan Undersampling dalam Menangani Class Imbalanced dan Overlapping pada Klasifikasi Data Bank Marketing,” J. Resist. (Rekayasa Sist. Komputer), vol. 7, no. 1, pp. 32–42, 2024, doi: 10.31598/jurnalresistor.v7i1.1515.

[17] J. Al Amien, Yoze Rizki, and Mukhlis Ali Rahman Nasution, “Implementasi Adasyn Untuk Imbalance Data Pada Dataset UNSW-NB15 Adasyn Implementation For Data Imbalance on UNSW-NB15 Dataset,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 242–248, 2022, doi: 10.37859/coscitech.v3i3.4339.

[18] M. Tiara et al., “PEMANFAATAN ALGORITMA ADASYN DAN SUPPORT VECTOR MACHINE DALAM MENINGKATKAN AKURASI PREDIKSI KANKER PARU-PARU,” vol. 8, no. 5, pp. 8773–8778, 2024.

[19] I. Setiawan, I. F. Yasin, Y. T. Desianti, and A. Surakarta, “Komparasi Kinerja Algoritma Random Forest , Decision Tree , Naïve Bayes , dan KNN dalam Prediksi Tingkat Depresi Mahasiswa Menggunakan Student Depression Dataset,” vol. 6, no. 1, pp. 47–58, 2025.

[20] Ary Prandika Siregar, Dwi Priyadi Purba, Jojor Putri Pasaribu, and Khairul Reza Bakara, “Implementasi Algoritma Random Forest Dalam Klasifikasi Diagnosis Penyakit Stroke,” J. Penelit. Rumpun Ilmu Tek., vol. 2, no. 4, pp. 155–164, 2023, doi: 10.55606/juprit.v2i4.3039.

[21] D. T. Wilujeng, M. Fatekurohman, and I. M. Tirta, “Analisis Risiko Kredit Perbankan Menggunakan Algoritma K-Nearest Neighbor dan Nearest Weighted K-Nearest Neighbor,” Indones. J. Appl. Stat., vol. 5, no. 2, p. 142, 2023, doi: 10.13057/ijas.v5i2.58426.

Downloads

Published

2025-10-19

How to Cite

[1]
L. D. Nurhayati and M. Rahardi, “Impact of SMOTE and ADASYN on Class Imbalance in Metabolic Syndrome Classification Using Random Forest Algorithm”, JAIC, vol. 9, no. 5, pp. 2807–2813, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.