Sistem Presensi Karyawan Berbasis Pengenalan Wajah Dengan Metode Support Vector Machine
Abstract
Sistem presensi saat ini yang ada pada instansi ataupun perusahaan masih banyak yang menggunakan sistem manual. Disisi lain, perusahaan-perusahaan tersebut juga telah memiliki aplikasi pengelolaan SDM online. Oleh karena itu, untuk efektifitas dan pengembangan sistem, perlu dilakukan pengembangan sistem presensi manual tersebut menjadi sebuah sistem yang dapat diintegrasikan dengan sistem pengelolaan SDM. Untuk itu, penelitian ini mengusulkan pengembangan sistem presensi berbasiskan pengenalan wajah yang diintegrasikan dengan aplikasi pengelolaan SDM. Sistem yang dibangun merupakan sistem deteksi dan pengenalan menggunakan Support Vector Machine yang di kombinasikan dengan metode Histogram of oriented gradient. Hasil pengujian sistem presensi menunjukkan hasil recall sebesar 77,78%, nilai spesifitas 32,22%, akurasi sistem 72,78%, dan kepresisian sistem mencapai 70,71%.
Downloads
References
E. Rahmawati et al., “Digital signature on file using biometric fingerprint with fingerprint sensor on smartphone,” Proceedings IES-ETA 2017 - International Electronics Symposium on Engineering Technology and Applications, vol. 2017-December, pp. 234–238, Dec. 2017, doi: 10.1109/ELECSYM.2017.8240409.
W. Jiang, X. Wang, X. Song, Q. Liu, and X. Liu, “Tracking your browser with high-performance browser fingerprint recognition model,” China Communications, vol. 17, no. 3, pp. 168–175, Mar. 2020, doi: 10.23919/JCC.2020.03.014.
B. P. Nguyen, W. L. Tay, and C. K. Chui, “Robust Biometric Recognition from Palm Depth Images for Gloved Hands,” IEEE Transactions on Human-Machine Systems, vol. 45, no. 6, pp. 799–804, Dec. 2015, doi: 10.1109/THMS.2015.2453203.
A. Gangwar and A. Joshi, “DeepIrisNet: Deep iris representation with applications in iris recognition and cross-sensor iris recognition,” undefined, vol. 2016-August, pp. 2301–2305, Aug. 2016, doi: 10.1109/ICIP.2016.7532769.
R. He, X. Wu, Z. Sun, and T. Tan, “Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 7, pp. 1761–1773, Jul. 2019, doi: 10.1109/TPAMI.2018.2842770.
S. Wardoyo, R. Wiryadinata, and R. Sagita, “Sistem Presensi Berbasis Agoritma Eigenface Dengan Metode Principal Component Analysis,” Setrum: Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 3, no. 1, pp. 61–68, Mar. 2016, doi: 10.36055/SETRUM.V3I1.498.
Hanif Al Fatta, Rekayasa Sistem Pengenalan Wajah. Yogyakarta: Andi Offset, 2009.
Ari Kurniawan and Marzuki Syahfirin, “Aplikasi Deteksi Objek Menggunakan Histogram of Oriented Gradient Untuk Modul Sistem Cerdas Pada Robot Nao,” Lampung, 2016.
A. Zisserman, “C19 Machine Learning lectures Hilary 2015, Lecture 2: The SVM classifier.” 2015.
C. Cortes, V. Vapnik, and L. Saitta, “Support-vector networks,” Machine Learning 1995 20:3, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified Embedding for Face Recognition and Clustering,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 07-12-June-2015, pp. 815–823, Mar. 2015, doi: 10.1109/CVPR.2015.7298682.
Emmanuel Agu, “Digital Image Processing (CS/ECE 545) Lecture 11: Geometric Operations, Comparing Images and Future Directions.” Accessed: Dec. 29, 2021. [Online]. Available: https://web.cs.wpi.edu/~emmanuel/courses/cs545/S14/slides/lecture01.pdf
Darma Putra Westriningsih, Pengolahan citra digital / Darma Putra, 1st ed. Yogyakarta: Andi, 2010.
D. M. W. Powers and Ailab, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” Oct. 2020, Accessed: Dec. 28, 2021. [Online]. Available: https://arxiv.org/abs/2010.16061v1
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.