Model Rekomendasi Produk Perawatan Kulit Wajah Menggunakan Metode Content Based Filtering (CBF)
Abstract
Facial skin functions as a protective barrier against environmental pollution, including ultraviolet rays, which can cause wrinkles, aging, acne, and enlarged pores. Additionally, an unbalanced diet, lack of rest, and exposure to free radicals can further worsen skin conditions. Facial skincare is crucial as it relates to personal identity and health. Facial skin types are categorized into five groups: normal, dry, oily, combination, and sensitive, classified based on water and oil levels in the skin. A skincare product recommendation model is needed to assist consumers in finding products suitable for their skin issues. This need becomes increasingly significant given the wide variety of facial skincare products available in the market today. This study developed a recommendation model using the content-based filtering (CBF) method, which considers product characteristics such as ingredient composition. Experimental results show that the model effectively provides recommendations aligned with user preferences. The model demonstrated good performance, achieving an accuracy rate of 88.89%.
Downloads
References
B. K. Lubis, “Formulasi Masker Clay Ekstrak Etanol Kentang (Solanum Tuberosum) Sebagai Anti Aging.” 2018.
Y. K. Kumarahadi, M. Z. Arifin, S. Pambudi, T. Prabowo, and K. Kusrini, “Sistem Pakar Identifikasi Jenis Kulit Wajah Dengan Metode Certainty Factor.” 2020.
M. H. Perwita, “Pemanfaatan ekstrak Moringa oleifera sebagai masker organik untuk merawat kesehatan kulit wajah,” J. Kel. Sehat Sejah., vol. 17, no. 2, pp. 36–41, 2019.
D. D. Putri, M. T. Furqon, And R. S. Perdana, “Klasifikasi Penyakit Kulit Pada Manusia Menggunakan Metode Binary Decision Tree Support Vector Machine (Bdtsvm)(Studi Kasus: Puskesmas Dinoyo Kota Malang,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., Vol. 2, No. 5, 2018.
P. R. Agami, I. Y. Purbasari, And B. Rahmat, “Penentuan Penggunaan Lulur Dan Masker Organik Sesuai Dengan Diagnosa Jenis Kulit Wajah Menggunakan Metode Decision Tree Algoritma C4,” 5. J. Inform. Dan Sist. Inf., Vol. 2, No. 2, Pp. 313–321, 2021.
M. E. T. Butarbutar And A. Y. Chaerunisaa, “Peran Pelembab Dalam Mengatasi Kondisi Kulit Kering,” Maj. Farmasetika, Vol. 6, No. 1, Pp. 56–69, 2020.
M. A. Abilisa, R. Magdalena, And S. Saâ, “Identifikasi Jenis Kulit Manusia Menggunakan Metode Glcm Dan Lvq Berbasis Android,” Eproceedings Eng., Vol. 8, No. 1, 2021.
M. A. Sodik, “kesehatan kulit.” 2020.
F. Nugroho and M. I. Rahayu, “No Title,” Sist. Rekom. Prod. UKM DI KOTA BANDUNG MENGGUNAKAN Algoritm. Collab. FILTERING. J. Ris. Sist. Inf. dan Teknol. Inf. (JURSISTEKNI, vol. 2, no. 3, pp. 23–31, 2020.
J. Y. Sinaga, F. Amalia, and E. Santoso, “Pengembangan Sistem Rekomendasi Produk Perawatan Kulit Berbasis Web Menggunakan Metode AHP,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 11, pp. 4071–4079, 2020.
M. Fahrurrozi And M. Se, “No Title,” In Entrepreneurship & Digitalisasi: Mengembangkan Bisnis Di Era 5.0, Universitas Hamzanwadi Press, 2023.
V. Putriany, J. Jauhari, And R. I. Heroza, “March,” Item Clust. As An Input Ski. Care Prod. Recomm. Syst. Using Content Based Filtering. J. Phys. Conf. Ser. (Vol. 1196, No. 1, P. 012004), 2019.
R. Pebrianto, S. N. Nugraha, and W. Gata, “Perancangan Sistem Pakar Penentuan Jenis Kulit Wajah Menggunakan Metode Certainty Factor,” IJCIT (Indonesian J. Comput. Inf. Technol, vol. 5, no. 1, pp. 83–93, 2020.
P. D. P. SHERLY, “Uji Aktivitas Anti-Aging Sediaan Krim Berbahan Aktif Kombinasi Ekstrak Bunga Telang (Clitoria Ternatea) Dan Lidah Buaya (ALOE VERA.” 2023.
I. D. Wijaya, M. H. Ratsanjani, and T. Yulianti, “Sistem Pakar Diagnosis Masalah Kulit Wajah untuk Penentuan Kecocokan Skincare,” in Seminar Informatika Aplikatif Polinema, 2021, pp. 83–88.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.