Classification of Nutritional Status Using the Fuzzy Mamdani Method : Case Study at Banjar City Hospital

Authors

  • Muhammad Satria Nugraha Universitas Teknologi Yogyakarta
  • Fadil Indra Sanjaya Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i4.9893

Keywords:

Fuzzy Mamdani, Nutritional Status, Classification, Decision Support System, Body Mass Index

Abstract

The problem of nutritional status in adults requires accurate and adaptive classification methods. This study aims to develop a decision support system using the Fuzzy Mamdani method to classify nutritional status based on Body Mass Index (BMI). A dataset consisting of 237 anthropometric records from Banjar City Regional General Hospital was utilized. The system applies five fuzzy rules to map BMI values into nutritional categories: malnutrition, underweight, normal, overweight, and obesity. The classification process involves fuzzification, inference, and defuzzification using the centroid method. System performance evaluation shows an overall accuracy of 91.13%, with the highest classification precision achieved in the normal category (98.54%) and the lowest in the malnutrition category (30.77%). The results demonstrate that the Fuzzy Mamdani method is effective for nutritional classification, although refinement is needed for underrepresented categories. This system can serve as a useful tool for supporting clinical decision-making in public health services.

Downloads

Download data is not yet available.

References

[1] R. N. Alifah et al., “Perbandingan Metode Tree Based Classification untuk Masalah Klasifikasi Data Body Mass Index,” Indonesian Journal of Mathematics and Natural Sciences, May 2024. Accessed: Jun. 13, 2025. [Online]. Available: https://journal.unnes.ac.id/journals/JM/article/view/2991/323

[2] P. A. Ejegwa, I. C. Onyeke, B. T. Terhemen, M. P. Onoja, A. Ogiji, and C. U. Opeh, “Modified Szmidt and Kacprzyk’s Intuitionistic Fuzzy Distances and their Applications in Decision-making,” Journal of the Nigerian Society of Physical Sciences, pp. 174–182, May 2022, doi: 10.46481/jnsps.2022.530.

[3] C. D. Mait, J. A. Watuseke, P. D. G. Saerang, and S. R. Joshua, “Sistem Pendukung Keputusan Menggunakan Fuzzy Logic Tahani Untuk Penentuan Golongan Obat Sesuai Dengan Penyakit Diabetes,” JURNAL MEDIA INFOTAMA, vol. 18, no. 2, pp. 344–353, Oct. 2022, doi: 10.37676/jmi.v18i2.2936.

[4] N. A. Mufid, “Klasifikasi Besar Potensi Kemunculan Batu Ginjal Menggunakan Fuzzy Inference System (FIS) Metode Mamdani,” Jurnal Pendidikan Matematika, vol. 1, no. 1, p. 15, Nov. 2023, doi: 10.47134/ppm.v1i1.110.

[5] D. H. Ramadhani, R. Srikandi, M. Ikhwan, and R. A. Saputra, “Penerapan Logika Fuzzy Dalam Klasifikasi Status Gizi Balita Di Puskesmas Pondidaha Menggunakan Metode Fuzzy Tsukamoto,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4017.

[6] Yuza Reswan, Y. Putra, Yulia Darnita, and Dandi Sunardi, “Penggunaan Metode Fuzzy Logic Untuk Mendeteksi Gizi Buruk Pada Balita,” JUKOMIKA (Jurnal Ilmu Komputer dan Informatika), vol. 6, no. 2, pp. 83–92, Dec. 2023, doi: 10.54650/jukomika.v6i2.529.

[7] Y. Reswan, Y. Darnita, A. Walad Mahfuzhi, and Y. Putra, “Deteksi Gizi Buruk Pada Balita Menggunakan Metode Fuzzy Logic (Studi Kasus Puskesmas Kecamatan Semidang Alas Kabupaten Seluma),” Jurnal Media Infotama, vol. 20, no. 1, p. 224, 2024, Accessed: Jun. 12, 2025. [Online]. Available: https://jurnal.unived.ac.id/index.php/jmi/article/view/5626

[8] O. Y. Supriadi and H. Suhendi, “Perancangan Sistem Pakar Mendiagnosa Anemia Menggunakan Metode Fuzzy Mamdani,” Journal of Innovation Research and Knowledge, vol. 4, no. 5, pp. 2739–2748, Oct. 2024, Accessed: Jun. 12, 2025. [Online]. Available: https://bajangjournal.com/index.php/JIRK/article/view/8696

[9] W. Harma, F. Hadi, and D. Kartika, “Digitalisasi Bisnis dalam Strategi Pemasaran Maggot BSF pada Agribisnis Anak Nagari dengan Metode Fuzzy Mamdani,” Jurnal KomtekInfo, pp. 11–17, Mar. 2024, doi: 10.35134/komtekinfo.v11i1.497.

[10] S. Fadila, “Aplikasi Ricezzy Untuk Menghitung Irigasi Tanaman Padi Menggunakan Metode Fuzzy Mamdani,” JEKIN - Jurnal Teknik Informatika, vol. 2, no. 1, pp. 1–8, Jun. 2022, doi: 10.58794/jekin.v2i1.88.

[11] F. WAHYU, G. W. Nurcahyo, and S. Arlis, “Penerapan Metode Fuzzy Time Series untuk Memprediksi Hasil Panen Kopi pada Dinas Pertanian,” Jurnal KomtekInfo, pp. 139–148, Sep. 2024, doi: 10.35134/komtekinfo.v11i3.543.

[12] E. Yuniarti, B. Mulya, N. Yoantrista, D. Adinda Putri, R. Cholida, and A. Mabrukah Aulia, “Analisis Indeks Massa Tubuh (Imt) Sebagai Penanda Status Gizi Pada Mahasiswa Biologi, Fmipa, Universitas Negeri Padang Analysis Of Body Mass Index (Bmi) As A Nutritional Status Indicator In Biology Students, Fmipa, Padang State University,” VARIABLE RESEARCH JOURNAL, vol. 02, p. 1, 2025.

[13] D. Anjani, D. Novianti, and Y. Bachtiar, “Prediksi Efisien Waktu Tempuh Mobil Pengangkut CPO Menggunakan Logika Fuzzy Mamdani,” Journal of Informatics Management and Information Technology, vol. 4, no. 4, pp. 164–175, 2024, doi: 10.47065/jimat.v4i4.402.

[14] N. Nafisah, I. N. Syamsiana, W. Kusuma, R. I. Putri, and A. D. W. Sumari, “Analisa Perbandingan Pengaturan Suhu Berbasis Logika Fuzzy Interferensi Sugeno dan Mamdani pada Alat Pengering Biji Kopi,” Agroteknika, vol. 6, no. 2, pp. 272–288, Dec. 2023, doi: 10.55043/agroteknika.v6i2.240.

[15] R. Fauzi and E. I. H. Ujianto, “Sentiment Analysis of Indonesian Responses to the Conflict in Palestine Using KNN and SVM Methods,” Journal of Applied Informatics and Computing, vol. 8, no. 2, pp. 542–549, Nov. 2024, doi: 10.30871/jaic.v8i2.8725.

Downloads

Published

2025-08-06

How to Cite

[1]
M. S. Nugraha and F. I. Sanjaya, “Classification of Nutritional Status Using the Fuzzy Mamdani Method : Case Study at Banjar City Hospital”, JAIC, vol. 9, no. 4, pp. 1498–1505, Aug. 2025.

Issue

Section

Articles