Clustering Korean Drama Viewers’ Preferences for Marketing Strategy Optimization Using the K-Means Algorithm on the MyDramaList Platform
DOI:
https://doi.org/10.30871/jaic.v9i4.9820Keywords:
Drama Korea, K-Mean Clustering, MyDramaList, Audience Preferences, Marketing StrategyAbstract
Korean dramas are highly popular in Indonesia, but it is a challenge for marketers to understand the diverse tastes of the audience. This study aims to identify audience preference segments by applying the K-Means algorithm to perform clustering. The analysis was conducted on 500 Korean dramas from the MyDramaList platform released in the period 2020 to 2023. Features used in the clustering process include rating, number of viewers (no_of_viewers), year of release (year), and genre. To overcome the multi-label genre, this research uses one-hot encoding technique to convert categorical data into numerical format. The optimal number of clusters was determined as four (4) based on analysis using the Elbow Method. The analysis successfully identified four distinct audience segments. Cluster 1 is the largest market segment which includes 323 dramas with a dominant genre of “Drama and Romance” and an average rating of 7.64. In contrast, Cluster 2 is a high-quality niche segment consisting of only 16 dramas but has the highest average rating (8.29) as well as the highest average viewership (25,739), with the dominant genre of “Drama and Mystery”. The other two segments are Cluster 0 (58 dramas) which focuses on the “Thriller” and ‘Mystery’ genres, and Cluster 3 (147 dramas) which features the “Comedy, fantasy and romance” genres. These data-driven findings enable the development of more specific and targeted marketing strategies for each audience profile, thereby improving promotional effectiveness as well as the viewing experience.
Downloads
References
[1] L. O. Musrin, M. Aswan Zanynu, S. Utami, dan R. Kamil, “Dampak Intensitas Menonton Drama Korea Terhadap Perilaku Komunitas Pencinta Korea.” [Daring]. Tersedia pada: http://ojs.uho.ac.id/index.php/Jurnalistik/index28
[2] D. A. Topan dan N. Febrina Ernungtyas, “Preferensi Menonton Drama Korea Pada Remaja.” [Daring]. Tersedia pada: http://journal.moestopo.ac.id/index.php/pustakom
[3] J. Sains dan D. Seni Its, “Akuisisi dan Clustering Data Sosial Media Menggunakan Algoritma K-Means sebagai Dasar untuk Mengetahui Profil Pengguna,” 2019. [Daring]. Tersedia pada: https://apps.Twitter.com/
[4] Asri Suratmi, “Korean Wave as a Tool of Public Diplomacy: The Impact of South Korean Cultural Globalization in Indonesia from 2018 to 2023,” Eksekusi : Jurnal Ilmu Hukum dan Administrasi Negara, vol. 2, no. 1, hlm. 303–317, Des 2023, doi: 10.55606/eksekusi.v2i1.870.
[5] N. Raisa, N. Riza, dan W. I. Rahayu, “Analisis Sentimen Menggunakan SVM dan KNN Pada Review Drama Korea Di Mydramalist,” 2023.
[6] M. Nurdayat, N. Suarna, dan Y. A. Wijaya, “Analisa Clustering untuk Mengelompokan Data Penayangan Film Bioskop Menggunakan Algoritma K-Means,” INTERNAL (Information System Journal, vol. 6, no. 1, hlm. 68–78, doi: 10.32627.
[7] U. Surapati dan M. Jannah, “Penerapan Data Mining Menggunakan Metode K-Means Untuk Mengetahui Minat Customer Dalam Pembelian Merchandise Kpop,” Jurnal Sains dan Teknologi, vol. 5, no. 3, doi: 10.55338/saintek.v5i1.2739.
[8] K. Krishna Kumar, J. Priyanka, A. Professor, P. Officer, dan M. Final Semester, “Customer Segmentation Using K-Means Clustering,” 2024. [Daring]. Tersedia pada: www.ijcrt.org
[9] E. A. Saputra dan Y. Nataliani, “Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means,” Journal of Information Systems and Informatics, vol. 3, no. 3, 2021, [Daring]. Tersedia pada: http://journal-isi.org/index.php/isi
[10] B. S. Purnomo dan P. T. Prasetyaningrum, “Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Di Kota Yogyakarta Menggunakan Metode K-Means,” 2021.
[11] A. E. Satriatama dkk., “Analisis Klaster Data Pasien Diabetes untuk Identifikasi Pola dan Karakteristik Pasien,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 3, hlm. 172–182, Jul 2023, doi: 10.47233/jteksis.v5i3.828.
[12] A. Rosyd, A. Irma Purnamasari, dan I. Ali, “Penerapan Metode Long Short Term Memory (LSTM) Dalam Memprediksi Harga Saham Pt Bank Central Asia,” 2024.
[13] M. Ihza Rifatama dkk., “Optimasi Algoritma K-Nearest Neighbor Dengan Seleksi Fitur Menggunakan Xgboost,” 2023. [Daring]. Tersedia pada: http://e-journal.stmiklombok.ac.id/index.php/jireISSN.2620-6900
[14] N. A. Maori, “Metode Elbow Dalam Optimasi Jumlah Cluster Pada K-Means Clustering,” Jurnal SIMETRIS, vol. 14, 2023.
[15] N. Syahfitri, E. Budianita, A. Nazir, dan I. Afrianty, “KLIK: Kajian Ilmiah Informatika dan Komputer Pengelompokan Produk Berdasarkan Data Persediaan Barang Menggunakan Metode Elbow dan K-Medoid,” Media Online, vol. 4, no. 3, hlm. 1668–1675, 2023, doi: 10.30865/klik.v4i3.1525.
[16] M. N. Zhafar, K. Usman, dan F. Akhyar, “Penerapan Metode Clustering Dengan Algoritma K-Means Untuk Analisa Persebaran Varian Covid-19 (Studi Kasus Kelurahan Antapani Kidul),” eProceedings of Engineering, vol. 10, no. 5, 2023.
[17] H. Mutiasari, T. W. Purboyo, dan R. A. Nugrahaeni, “Sistem Rekomendasi Film Menggunakan Metode K-Means Clustering (Movie Recommendation System Using K-Means Clustering Method).”
[18] H. Maulana dkk., “Clustering RFM (Recency, Frequency, Monetary) Publisher Gim Menggunakan Algoritma K-Means,” 2023.
[19] N. A. Maori, “Metode Elbow Dalam Optimasi Jumlah Cluster Pada K-Means Clustering,” Jurnal SIMETRIS, vol. 14, 2023.
[20] H. Maulana dkk., “Clustering RFM (Recency, Frequency, Monetary) Publisher Gim Menggunakan Algoritma K-Means,” 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sulistina Nabilla, Agung Nugroho, Isria Miharti Mahaerni Putri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








