Rental Price Prediction of Boarding Houses in Batam City Using Linear Regression and Random Forest Algorithms
Abstract
Boarding houses, commonly known as "kost," are residential places typically rented by individuals, serving a function similar to hotels, but with more affordable pricing. With the proliferation of boarding house businesses, residents and newcomers in Batam city face challenges in selecting suitable accommodation based on both price and amenities. Leveraging machine learning, a branch of artificial intelligence (AI), and incorporating various algorithms, a system can be developed to predict the rental prices of boarding houses. This helps individuals make informed decisions regarding the suitability of a boarding house based on their preferences and budget. The algorithms utilized in this study are Linear Regression and Random Forest. The modeling process resulted in R2 Scores, with Linear Regression achieving a score of 64%, while Random Forest outperformed with an impressive 99% R2 Score. Due to the higher R2 Score of Random Forest, this model was selected for the development of a website using the Scrum framework. The outcome of this research is a predictive pricing website for boarding houses, offering a valuable tool for residents and visitors in Batam when seeking to rent or lease a boarding house.
Downloads
References
M. Sumarni and S. Wahyuni, “Determinan Keputusan Mahasiswa Ekonomi Syariah Memilih Rumah Kost (Studi Kasus Mahasiswa Prodi Ekonomi Syariah IAIN Langsa),” J. Mhs. Akunt. SAMUDRA, vol. 2, no. 3, pp. 230–240, 2021.
A. Suparwo, R. Roisah, A. Solihat, and Fitriyani, “Strategi Pemasaran Online Berbasis Aplikasi Pada Kost Di Wilayah Pasundan Bandung,” J. Pengabdi. Kpd. Masy. Nusant., vol. 3, no. 2, pp. 1634–1642, 2023.
D. Handayani and H. Lubis, “Sistem Informasi Manajemen Aplikasi Rumah Kost dengan Menggunakan Rapid Application Development Berbasis Android dan SMS Gateway,” JSI (Jurnal Sist. Informasi) Univ. Suryadana, vol. 8, no. 1, pp. 83–88, 2021, doi: https://doi.org/10.35968/jsi.v8i1.610.
N. S. A. Laily and Rapina, “Rancang Bangun Rumah Kost Berbasis Web Untuk Memudahkan Pencarian Kost Di Kota Batam,” Zo. Komput., vol. 11, no. 1, pp. 49–57, 2021.
D. Sunarsi, A. Barsah, H. Hastono, and I. R. Akbar, “Pengaruh Harga dan Fasilitas Terhadap Minat Sewa Kost yang Berdampak Pada Prestasi Belajar Mahasiswa di Yogyakarta,” J. Educ. Hum. Soc. Sci., vol. 3, no. 2, pp. 601–609, 2020, doi: 10.34007/jehss.v3i2.369.
M. D. Ilhami and Y. Feri, “Pengaruh Harga dan Lokasi Terhadap Keputusan Sewa Kamar Kost (Studi Kasus Pada Mahasiswa yang Sewa Kamar Kost di Kawasan Adam Malik KM.9),” J. Indones. Manag., vol. 3, no. 2, pp. 229–240, 2023.
L. Utari and A. Zulfikar, “Penerapan Convolutional Neural Networks Menggunakan Edge Detection Untuk Identifikasi Motif Jenis Batik,” TeknoIS J. Ilm. Teknol. Inf. dan Sains, vol. 13, no. 1, pp. 110–123, 2023, doi: 10.36350/jbs.v13i1.184.
L. U. Khasanah, “Kenali Pengertian Machine Learning & Contohnya, Pemula Catat!,” DQLab, 2022. https://dqlab.id/kenali-pengertian-machine-learning-and-contohnya-pemula-catat (accessed Nov. 03, 2022).
F. R. Lumbanraja, R. A. Saputra, K. Muludi, A. Hijriani, and A. Junaidi, “Implementasi Support Vector Machine Dalam Memprediksi Harga Rumah Pada Perumahan Di Kota Bandar Lampung,” J. Pepadun, vol. 2, no. 3, pp. 327–335, 2021, doi: 10.23960/pepadun.v2i3.90.
M. R. Fahlepi and A. Widjaja, “Penerapan Metode Multiple Linear Regression Untuk Prediksi Harga Sewa Kamar Kost,” J. Strateg., vol. 1, no. November, pp. 615–629, 2019.
K. M. B. Azhary, “Analisis Tren Kepemilikan Rumah di Kota Palembang dan Prediksi Harga Rumah memanfaatkan Machine Learning,” J. Perenc. Wil., vol. 8, no. 2, pp. 165–173, 2023, doi: 10.33772/jpw.v8i2.377.
W. Ali and S. A. Aklani, “Analisis Algoritma Monte Carlo Untuk Memprediksi Keuntungan Pembangunan Apartemen Menggunakan SCRUM Framework,” J. Ilm. Betrik, vol. 13, no. 03, pp. 287–294, 2022.
D. F. Ningtyas and N. Setiyawati, “Implementasi Flask Framework pada Pembangunan Aplikasi Purchasing Approval Request,” J. Janitra Inform. dan Sist. Inf., vol. 1, no. 1, pp. 19–34, 2021, doi: 10.25008/janitra.v1i1.120.
U. Athiyah, A. Hananta, T. Maulidi, V. M. E. Putra, T. F. H. Purba, and A. A. W. Bakowatun, “Sistem Pendukung Keputusan Prediksi Harga Rumah Kost untuk Mahasiswa IT Telkom Purwokerto Menggunakan Metode Fuzzy Tsukamoto Berbasis Web,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 2, pp. 77–81, 2021, [Online]. Available: http://journal.ittelkom-pwt.ac.id/index.php/dinda.
Trivusi, “Perbedaan MAE, MSE, RMSE, dan MAPE pada Data Science,” Trivusi, 2023. https://www.trivusi.web.id/2023/03/perbedaan-mae-mse-rmse-dan-mape.html#google_vignette (accessed Oct. 29, 2023).
W. Supriyanti and D. A. Pertiwi, “Implementasi Scrum dalam Pengembangan Sistem Informasi Pengelolaan Nilai Siswa,” REMIK Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 6, no. 3, pp. 547–560, 2022, [Online]. Available: http://jurnal.polgan.ac.id/index.php/remik/article/view/11732.
Copyright (c) 2023 Jerry Jerry, Yefta Christian, Herman Herman
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).