Rental Price Prediction of Boarding Houses in Batam City Using Linear Regression and Random Forest Algorithms

  • Jerry Jerry Universitas Internasional Batam
  • Yefta Christian Universitas Internasional Batam
  • Herman Herman Universitas Internasional Batam
Keywords: Price Prediction, Boarding Houses, Random Forest, Linear Regression, Scrum

Abstract

Boarding houses, commonly known as "kost," are residential places typically rented by individuals, serving a function similar to hotels, but with more affordable pricing. With the proliferation of boarding house businesses, residents and newcomers in Batam city face challenges in selecting suitable accommodation based on both price and amenities. Leveraging machine learning, a branch of artificial intelligence (AI), and incorporating various algorithms, a system can be developed to predict the rental prices of boarding houses. This helps individuals make informed decisions regarding the suitability of a boarding house based on their preferences and budget. The algorithms utilized in this study are Linear Regression and Random Forest. The modeling process resulted in R2 Scores, with Linear Regression achieving a score of 64%, while Random Forest outperformed with an impressive 99% R2 Score. Due to the higher R2 Score of Random Forest, this model was selected for the development of a website using the Scrum framework. The outcome of this research is a predictive pricing website for boarding houses, offering a valuable tool for residents and visitors in Batam when seeking to rent or lease a boarding house.

Downloads

Download data is not yet available.

References

M. Sumarni and S. Wahyuni, “Determinan Keputusan Mahasiswa Ekonomi Syariah Memilih Rumah Kost (Studi Kasus Mahasiswa Prodi Ekonomi Syariah IAIN Langsa),” J. Mhs. Akunt. SAMUDRA, vol. 2, no. 3, pp. 230–240, 2021.

A. Suparwo, R. Roisah, A. Solihat, and Fitriyani, “Strategi Pemasaran Online Berbasis Aplikasi Pada Kost Di Wilayah Pasundan Bandung,” J. Pengabdi. Kpd. Masy. Nusant., vol. 3, no. 2, pp. 1634–1642, 2023.

D. Handayani and H. Lubis, “Sistem Informasi Manajemen Aplikasi Rumah Kost dengan Menggunakan Rapid Application Development Berbasis Android dan SMS Gateway,” JSI (Jurnal Sist. Informasi) Univ. Suryadana, vol. 8, no. 1, pp. 83–88, 2021, doi: https://doi.org/10.35968/jsi.v8i1.610.

N. S. A. Laily and Rapina, “Rancang Bangun Rumah Kost Berbasis Web Untuk Memudahkan Pencarian Kost Di Kota Batam,” Zo. Komput., vol. 11, no. 1, pp. 49–57, 2021.

D. Sunarsi, A. Barsah, H. Hastono, and I. R. Akbar, “Pengaruh Harga dan Fasilitas Terhadap Minat Sewa Kost yang Berdampak Pada Prestasi Belajar Mahasiswa di Yogyakarta,” J. Educ. Hum. Soc. Sci., vol. 3, no. 2, pp. 601–609, 2020, doi: 10.34007/jehss.v3i2.369.

M. D. Ilhami and Y. Feri, “Pengaruh Harga dan Lokasi Terhadap Keputusan Sewa Kamar Kost (Studi Kasus Pada Mahasiswa yang Sewa Kamar Kost di Kawasan Adam Malik KM.9),” J. Indones. Manag., vol. 3, no. 2, pp. 229–240, 2023.

L. Utari and A. Zulfikar, “Penerapan Convolutional Neural Networks Menggunakan Edge Detection Untuk Identifikasi Motif Jenis Batik,” TeknoIS J. Ilm. Teknol. Inf. dan Sains, vol. 13, no. 1, pp. 110–123, 2023, doi: 10.36350/jbs.v13i1.184.

L. U. Khasanah, “Kenali Pengertian Machine Learning & Contohnya, Pemula Catat!,” DQLab, 2022. https://dqlab.id/kenali-pengertian-machine-learning-and-contohnya-pemula-catat (accessed Nov. 03, 2022).

F. R. Lumbanraja, R. A. Saputra, K. Muludi, A. Hijriani, and A. Junaidi, “Implementasi Support Vector Machine Dalam Memprediksi Harga Rumah Pada Perumahan Di Kota Bandar Lampung,” J. Pepadun, vol. 2, no. 3, pp. 327–335, 2021, doi: 10.23960/pepadun.v2i3.90.

M. R. Fahlepi and A. Widjaja, “Penerapan Metode Multiple Linear Regression Untuk Prediksi Harga Sewa Kamar Kost,” J. Strateg., vol. 1, no. November, pp. 615–629, 2019.

K. M. B. Azhary, “Analisis Tren Kepemilikan Rumah di Kota Palembang dan Prediksi Harga Rumah memanfaatkan Machine Learning,” J. Perenc. Wil., vol. 8, no. 2, pp. 165–173, 2023, doi: 10.33772/jpw.v8i2.377.

W. Ali and S. A. Aklani, “Analisis Algoritma Monte Carlo Untuk Memprediksi Keuntungan Pembangunan Apartemen Menggunakan SCRUM Framework,” J. Ilm. Betrik, vol. 13, no. 03, pp. 287–294, 2022.

D. F. Ningtyas and N. Setiyawati, “Implementasi Flask Framework pada Pembangunan Aplikasi Purchasing Approval Request,” J. Janitra Inform. dan Sist. Inf., vol. 1, no. 1, pp. 19–34, 2021, doi: 10.25008/janitra.v1i1.120.

U. Athiyah, A. Hananta, T. Maulidi, V. M. E. Putra, T. F. H. Purba, and A. A. W. Bakowatun, “Sistem Pendukung Keputusan Prediksi Harga Rumah Kost untuk Mahasiswa IT Telkom Purwokerto Menggunakan Metode Fuzzy Tsukamoto Berbasis Web,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 2, pp. 77–81, 2021, [Online]. Available: http://journal.ittelkom-pwt.ac.id/index.php/dinda.

Trivusi, “Perbedaan MAE, MSE, RMSE, dan MAPE pada Data Science,” Trivusi, 2023. https://www.trivusi.web.id/2023/03/perbedaan-mae-mse-rmse-dan-mape.html#google_vignette (accessed Oct. 29, 2023).

W. Supriyanti and D. A. Pertiwi, “Implementasi Scrum dalam Pengembangan Sistem Informasi Pengelolaan Nilai Siswa,” REMIK Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 6, no. 3, pp. 547–560, 2022, [Online]. Available: http://jurnal.polgan.ac.id/index.php/remik/article/view/11732.

Published
2023-12-05
How to Cite
[1]
J. Jerry, Y. Christian, and H. Herman, “Rental Price Prediction of Boarding Houses in Batam City Using Linear Regression and Random Forest Algorithms”, JAIC, vol. 7, no. 2, pp. 263-270, Dec. 2023.
Section
Articles